Introduction to Transformers

Transformers

LLMs are built out of transformers

Transformer: a specific kind of network architecture, like a
fancier feedforward network, but based on attention

Attention Is All You Need

Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com

Llion Jones* Aidan N. Gomez* T Lukasz Kaiser*
Google Research University of Toronto Google Brain
1llion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Illia Polosukhin* *
illia.polosukhin@gmail.com

A very approximate timeline

1990 Static Word Embeddings

2003 Neural Language Model

2008 Multi-Task Learning

2015 Attention

2017 Transformer

2018 Contextual Word Embeddings and Pretraining
2019 Prompting

Attention

Transformers

Instead of starting with the big picture

Let's consider the embeddings for an individual word from a particular layer

Next token long and thanks for all
))) \)
Language

logits logits logits logits logits

Modeing | =— | |
Head “ “ “

() () () ())
T = =]
Stacked @00
Tansormer | == | | == | | == | | == || ==
Blocks | E— — — —]
x1 X2 X3 x4 x5
4 A \ A \
Input > N \/ P
Encoding E E E E E

Input tokens So long and thanks for

Problem with static embeddings (word2vec)

They are static! The embedding for a word doesn't reflect how its
meaning changes in context.

The chicken didn't cross the road becaus@was too tired

What is the meaning represented in the static embedding for "it"?

Contextual Embeddings

* Intuition: a representation of meaning of a word
should be different in different contexts!

* Contextual Embedding: each word has a different

vector that expresses different meanings
depending on the surrounding words

* How to compute contextual embeddings?
* Attention

Contextual Embeddings

The chicken didn't cross the road because 1t

What should be the properties of "it"?

The chicken didn't cross the road because 1t was too tired
The chicken didn't cross the road because 1t was too wide

At this point in the sentence, it's probably referring to either the chicken or the street

Intuition of attention

Build up the contextual embedding from a word by
selectively integrating information from all the

neighboring words

We say that a word "attends to" some neighboring
words more than others

Intuition of attention:

columns corresponding to input tokens

- O
Q) 0p]
5 e n 5 o
n
Layer k+1 v 4 B O o © O n 0
o H4 49 S0 0 @ O
i O O @)) “ QO =)
self-attention distribution
Q
P 5
~ n
Layer k a0 T ©
Q O O Q M @) N O
e - N a @) Q) M O
- {® o Y 9 Q0 r4 z P

tired

tired

Attention definition

A mechanism for helping compute the embedding for
a token by selectively attending to and integrating

information from surrounding tokens (at the previous
layer).

More formally: a method for doing a weighted sum of
vectors.

Attention is left-to-right

GO G G GO GO

Self-Attention attention attention attention attention attention

Layer l,//’//
1 |
(*) ()) (X))

Simplified version of attention: a sum of prior words
weighted by their similarity with the current word

Given a sequence of token embeddings:
X; X X3 X4 X5 X X7 X

Produce: a, = a weighted sum of x, through x- (and x;)
Weighted by their similarity to x;

SCOI‘@(X,’, Xj) = Xj-Xj

®;; = softmax(score(x;,x;)) Vj<i

d;, — E OC,'J'XJ'

J<i

Intuition of attention:

columns corresponding to input tokens

- O
Q) 0p)
S = 4 5 ©
p)]
Layer k+1 o 4 T O ©® «© O n O
o o g < 0 0 S O
= O T 0O L Y Q z P
self-attention distribution
Q
P %
~ p)]
Layer K o0 T ©
Q O @) Q 18] O 0p) O
= - g < O O v o O
i O O) S QO - =)

x]1 x2 x3 x4 x5 x6 x7 xi

tired

tired

An Actual Attention Head: slightly more complicated

High-level idea: instead of using vectors (like x; and x,)
directly, we'll represent 3 separate roles each vector x; plays:

query: As the current element being compared to the
preceding inputs.

key: as a preceding input that is being compared to the
current element to determine a similarity

value: a value of a preceding element that gets weighted
and summed

Attention Intuition

qu.erg
c 0,
0) 0p)
LS ~ 0p 3)
Layer k+1 ®» 4 T 0 o © O
G G - ﬁ—l G O 0]
= O O O) .- Q

self-attention distribution

0,
) 0
~ n)
Layer k o0 T ©
0, © O) © O
G - M G O 0,)
- O O) M Q -

x]1 x2 x3 x4 x5 x6 x7 xi

values

was

was

TOO

TOO

tired

tired

Intuition of attention: query

was

was

- 0
SRS 0
Y4 ~ 0p i)
Layer k+1 » 4 8 06 o © O
o o 4 49 S0 o
=H O T O O Y Q
self-attention distribution
Q
g 5
~ n
Layer k o0 T ©
Q O @ Q © @
< — Y G @) Q)
H O O)] QO -
x] x2 x3 x4 x5 x6 x7 xi
Iqus» K K K K Kk K kK | [k
Vv Vv V Vv V \/

values - -

TLOO
tired

TLOO
tired

An Actual Attention Head: slightly more complicated

We'll use matrices to project each vector x; into a
representation of its role as query, key, value:

* query: W2
¢ key: WK
* value: WV

g =xWY; k;=x;WK; v, =x,WV

An Actual Attention Head: slightly more complicated

Given these 3 representation of x
qi — XiWQ§ k; = XiWK; V; — X,'WV

To compute similarity of current element x; with
some prior element x;

We’'ll use dot product between q; and k.
And instead of summing up x;, we'll sum up v;

Final equations for one attention head

qi:XiWQ; kj XjWK; Vj:XjWV
q; - k;j
vy

softmax(score(x;,x;)) Vj <i

E OCijVj

J<1

score(X;,X)

OCij

d;

Calculating the value of a3

Output of self-attention s

6. Sum the weighted
value vectors

5. Weigh each value vector
31

4. Turninto «; ; weights via softmax

3. Divide score by /dy Jd.

2. Compare x3’s query with
the keys for x1, x2, and x3

1. Generate
key, query, value

vectors X1

Actual Attention: slightly more complicated

* |nstead of one attention head, we'll have lots of them!

* Intuition: each head might be attending to the context for different purposes
Different linguistic relationships or patterns in the context

qf:xiWQc; kj::ijKc; ve = ijVC; Ve 1<c<h

J
q; - k;
score” (X;,X;) =
(L)]) \/CTk
o;; = softmax(score®(x;,x;)) Vj <i
head; = Z(xfjv;
J<i

a, = (head! @ head”...®head")W?
MultiHeadAttention(x;, (X1, -+ ,Xy|) = a;

Multi-head attention

Project down to d

Concatenate Outputs

Each head
attends differently
to context

-
-

- - = -

- = -_-

Summary

Attention is a method for enriching the representation of a token by
incorporating contextual information

The result: the embedding for each word will be different in different
contexts!

Contextual embeddings: a representation of word meaning in its
context.

We'll see in the next lecture that attention can also be viewed as a
way to move information from one token to another.

Attention

Transformers

The Transformer Block

Transformers

Reminder: transformer language model

Next token long and than Ks for aII
t A
ey [) (& % é %
MOdeling ogits ogits ogit
Head %\J U
4=——) 14— \W4&.
% _ _ _
A
Stacked e L
Transformer é $ A $ A
Blocks E e
% (| || (|
x1 X3 x4 X5
A A \ A \
Input X X s
Encoding E E E E E

Input tokens So long and thanks for

The residual stream: each token gets passed up and
modified

hi_4 h; hi, 1

N

[Feedforward]

[Layer Norm |

/

11| (LayerNorm) .

Xi_q X Xit1

We'll need nonlinearities, so a feedforward layer
FFN(Xi) — ReLU(x,-Wl + bl)Wz + bz

hi_4 h; hi, 1

&
S

[Feedforward]

[Layer Norm |

/

11| (LayerNorm) -

Xiq X Xit1

Layer norm: the vector x; is normalized twice

hi_4 h; hi, 1

S

[Feedforward]

[Layer Norm |

/

(Layer Norm -

Xiq X Xit1

Layer Norm

Layer norm is a variation of the z-score from statistics, applied to a single vec- tor in a hidden layer

1 d
12"

b=
L

o = \gi_zl(xi—u)z

)

0]
(x—) 5

O

LayerNorm(x) =y

Putting together a single transformer block

hiq h, h,

I i+1
4 t! = LayerNorm(x;)
| Edforward tl-2 = MultiHeadAttention(t}, [x}, - ,xM)
1
[Layer Norm | t? — tl’z_l_xi

_ 4 3
‘ t’ = LayerNorm(t?)
| (Layer Norm‘}.‘::x\
o L hi — ti5 + t?

Xi_1 Xj Xit1

A transformer is a stack of these blocks
so all the vectors are of the same dimensionality d

Block 2

Block 1

Residual streams and attention

Notice that all parts of the transformer block apply to 1 residual stream (1
token).

Except attention, which takes information from other tokens

Elhage et al. (2021) show that we can view attention heads as literally moving
information from the residual stream of a neighboring token into the current

stream .

Token A Token B
residual residual
stream stream

The Transformer Block

Transformers

Parallelizing Attention
Computation

Transformers

Parallelizing computation using X

For attention/transformer block we've been computing a single
output at a single time step / in a single residual stream.

But we can pack the N tokens of the input sequence into a single
matrix X of size [N x d].

Each row of X is the embedding of one token of the input.

X can have 1K-32K rows, each of the dimensionality of the
embedding d (the model dimension)

Q = XWQ?: K=XWK: v =XxwV

QK'

Now can do a single matrix multiply to combine Q and K’

ql-k1i

ql-k2

ql-k3

ql-k4

q2-k1

q2-k2

q2:-k3

q2:-k4

q3-k1

q3-k2

q3-k3

q3+-k4

q4-k1

q4-k2

q4-k3

q4-k4

Parallelizing attention

* Scale the scores, take the softmax, and then

multiply the result by V resulting in a matrix of
shape N x d
* An attention vector for each input token

A = softmax (mask ((3/':7;)) V

Masking out the future

-
A = softmax (mask ((\Q/Pc(Tk)) V

* What is this mask function?
QK" has a score for each query dot every key,
including those that follow the query.

* Guessing the next word is pretty simple if you
already know it!

Masking out the future

A

softmax <mask <

QKT
Vi

Add —e< to cells in upper triangle

The softmax will turnitto O

)"

ql-k1

q2-k1

q2-k2

q3-k1

q3-k2

q3-k3

q4-k1

q4-k2

q4-k3

Another point: Attention is quadratic in length

A

softmax <mask <

QKT
Vi

)"

ql-k1

q2-k1

q2-k2

q3-k1

q3-k2

q3-k3

q4-k1

q4-k2

q4-k3

Attention again

X K
X Q) _ - X \Y
K Vv
Input Q gt W Key Input W Value
Token 1 W Tglt’:m Token 1 Token 1 Token 1 Toren 1
Input Input Key Input Value
Token 2 Query Token 2 | Token?2 Token 2 Token 2
X __ | Token 2 X — X _
Input - q Input Key Input Value
Token 3 Tol?eer:yS Token 3 Token 3 Token 3 Token 3
Input Value
Input Input Key
Query Token 4 dxd Token 4
Token 4 dxd Token 4 Token 4 d x dk Token 4 i Vv
~ Nxd : - - N xd, - N x d Nxd,
X N x dk N x d K
_ T .
Q K ak! v A
at X 2 8 & 7 = |q1-k1|q1-k2|q1-k3|q1-k4 vi al
mask q2 q2-k1|g2-k2 | q2-k3|q2-k4 X v2 = a2
a3 q3-k1|q3-k2|q3-k3| q3-k4 v3 a3
q4 d X N ° [] [] []
k q4-k1|q4-k2(q4-k3 |q4-k4 va a4
—~ Nxd N
x N =
K IN X IN Nxd N x d

Parallelizing Multi-head Attention

Q' =XWY¥; K' = XwW"; vi=xwV"

iKiT _
softmax (Q > V'
Vi
MultiHeadAttention(X) = (head; & head,... & head;)W®°

head; = SelfAttention(Q', K', V')

Parallelizing Multi-head Attention

O = LayerNorm(X + MultiHeadAttention(X))
LayerNorm(O + FFN(Q))

I
|

or
T! = MultiHeadAttention(X)

T2 = X+ T

T°> = LayerNorm(T?)
T = FEN(T?)

T5 — T4. 73

H = LayerNorm(T>)

Parallelizing Attention
Computation

Transformers

Input and output: Position
embeddings and the Language
Model Head

Transformers

Token and Position Embeddings

The matrix X (of shape [N x d]) has an embedding for
each word in the context.

This embedding is created by adding two distinct
embedding for each input

* token embedding
* positional embedding

Token Embeddings

Embedding matrix E has shape [|V | x d].
* One row for each of the |V | tokens in the vocabulary.

e Each word is a row vector of d dimensions

Given: string "Thanks for all the"

1. Tokenize with BPE and convert into vocab indices

w = [5,4000,10532,2224]

2. Select the corresponding rows from E, each row an embedding
. (row 5, row 4000, row 10532, row 2224).

Position Embeddings

There are many methods, but we'll just describe the simplest: absolute
position.

Goal: learn a position embedding matrix Epos of shape [1 x N].
Start with randomly initialized embeddings
* one for each integer up to some maximum length.

* j.e., just as we have an embedding for token fish, we’ll have an
embedding for position 3 and position 17.

* As with word embeddings, these position embeddings are learned along
with other parameters during training.

Each x is just the sum of word and position embeddings

Transformer Block

X = Composite
Embeddings
(word + position)

Word

) =
Embeddings |@ =
Position
Embeddings

Janet will back the bill

Language modeling head

.. Word probabilities 1 x |V|

4 ' A

Language Model Head [] Softmax over vocabulary V

L
takes h N and outputs a u|V Logits 1x|V|
distribution over vocabulary V
Unembeddlng Unembedding layer dx |V|
layer =
/
(hI_1) { hI_2 -N 1xd
LayerL ,—~— B — b L.

Transformer |

N o -+ —n——#rn'’'b06oed"—b—v'odt'ohhb—"t4k"otyt4v“—tohtrhk"oh'"thbt"tthhbt”e"” Qo B
Block

Language modeling head

Unembedding layer: linear layer projects from hLN (shape [1 X d]) to logit vector

1) (2 ... (M) Word probabilities 1x|V]
e A Why "unembedding"? Tied to ET

[] Softmax over vocabulary V Y &

Logits 1 xV

Unembedding :]] .
jayer = ET Unembedding layer d x IV Weight tying, we use the same weights for
> ChiL:] e d o two different matrices
N X

------------ Unembedding layer maps from an embedding to a
' 1x| V| vector of logits

Language modeling head

) (2] ... (M) Word probabilities 1x|V]
4 A
[Softmax over vocabulary V
Logits 1x|V]
Unembedding Unembedding layer dx|V|
layer = ET
- u /
@P 1xd
____________ \
____________ /
| L :

Logits, the score vector u

One score for each of the |V |
possible words in the vocabulary V.
Shape 1 X |V .

Softmax turns the logits into
probabilities over vocabulary.
Shape 1 X |V |.
L T
hk E

softmax(u)

Wit 1
Sample token to
generate at position i+1

The final transformer
mode] Viodeing

Head

Token probabilities -
i Wit
Sample token to
Language generate at position i+1
Modeling
Head

Input ‘il
Encoding E

Input token W.

Input and output: Position
embeddings and the Language
Model Head

Transformers

