Simple Recurrent Networks
(RNNs or ElIman Nets)

RNNs and
LSTMSs

Modeling Time in Neural Networks

Language is inherently temporal

Yet the simple NLP classifiers we've seen (for example for
sentiment analysis) mostly ignore time

* (Feedforward neural LMs (and the transformers we'll
see later) use a "moving window" approach to time.)

Here we introduce a deep learning architecture with a
different way of representing time

* RNNs and their variants like LSTMs

Recurrent Neural Networks (RNNs)

Any network that contains a cycle within its network
connections.

The value of some unit is directly, or indirectly,
dependent on its own earlier outputs as an input.

Simple Recurrent Nets (Elman nets)

o

The hidden layer has a recurrence as part of its input

The activation value h, depends on x; but also h;_4!

Forward inference in simple RNNs

Very similar to the feedforward networks we've seen!

Simple recurrent neural network illustrated as a
feedforward network

—
_— L

ht — g(Uht_1+Wxt)
y; = softmax(Vh,)

Inference has to be incremental

Computing h at time t requires that we first computed h at the
previous time step!

function FORWARDRNN(x, network) returns output sequence y

h() +—0

for i< 1 to LENGTH(x) do
h; %g(Uhi_l -+ Wxi)
yi < f(Vh;)

return y

Training in simple RNNSs

C)
Just like feedforward training: \ v /
C)

* training set,
* aloss function, /?
* backpropagation v / W \

(h;_1) (X

Weights that need to be updated:
* W, the weights from the input layer to the hidden layer,

* U, the weights from the previous hidden layer to the current hidden layer,
* V, the weights from the hidden layer to the output layer.

Training in simple RNNs: unrolling in time

Unlike feedforward networks:

1. To compute loss function for the output
at time t we need the hidden layer from
time t - 1.

2. hidden layer at time t influences the
output at time t and hidden layer at time

t+1 (and hence the output and loss at t+1).

So: to measure error accruing to hy,

* need to know its influence on both the
current output as well as the ones that
follow.

C

Unrolling in time (2) —)\

¢ X4)

We unroll a recurrent network into a feedforward
computational graph eliminating recurrence

1. Given an input sequence,
2. Generate an unrolled feedforward network specific to input

3. Use graph to train weights directly via ordinary backprop (or
can do forward inference)

Simple Recurrent Networks
(RNNs or ElIman Nets)

RNNs and
LSTMs

RNNs as Language Models

RNNs and
LSTMs

Reminder: Language Modeling

P(fish|Thanks for all the)

Wln HP WZ‘W<1

The size of the conditioning context for different LMs

The n-gram LM:
Context size is the n -1 prior words we condition on.

The feedforward LM:
Context is the window size.

The RNN LM:
No fixed context size; h,_, represents entire history

FFEN LMs vs RNN LMs

(L) (er1)(8)

FFN

b)
N\
Yi
Vv
hi o) U | (h-1)|U
w w w

Forward inference in the RNN LM

Given input X of of N tokens represented as one-hot vectors
X =[X1;..5%5 .3 XN
Use embedding matrix to get the embedding for current token x;

et — Ext
h, g(Uh;,_; +We;)
y: = softmax(Vh;)

Combine ...

Shapes

VI x d
\'}
dxd
dx 1 Cht—1) U (ht) d X1
W dxd

(e) dxf

Computing the probability that the next word is word k

P(WH—l :k|W1>---7Wt) — YI[k]

Pwiz) = | [Pwilwiic1)
=1
= | | Vilwi]

Training RNN LM

* Self-supervision
* take a corpus of text as training material
* ateachtimestept
* ask the model to predict the next word.

* Why called self-supervised: we don't need human labels;
the text is its own supervision signal

* We train the model to
* minimize the error
* in predicting the true next word in the training sequence,
* using cross-entropy as the loss function.

Cross-entropy loss

The difference between:

* a predicted probability distribution Lce = ZYt [logy: |w]
* the correct distribution. wev

CE loss for LMs is simpler!!!

* the correct distribution y, is a one-hot vector over the vocabulary
* where the entry for the actual next word is 1, and all the other entries are 0.

* So the CE loss for LMs is only determined by the probability of next word.
* Soattime t, CE loss is:

LcE (yAta Yt) = —logy; [Wt—l—l]

Teacher forcing

We always give the model the correct history to predict the next word (rather
than feeding the model the possible buggy guess from the prior time step).

This is called teacher forcing (in training we force the context to be correct based
on the gold words)

What teacher forcing looks like:
* At word position t

* the model takes as input the correct word wt together with ht-1, computes a
probability distribution over possible next words

* That gives loss for the next token wt+1

* Then we move on to next word, ignore what the model predicted for the next
word and instead use the correct word wt+1 along with the prior history
encoded to estimate the probability of token wt+2.

Weight tying

The input embedding matrix E and the final layer matrix V, are similar

* The columns of E represent the word embeddings for each word in
vocab. Eis [d x |V]]

* The final layer matrix V helps give a score (logit) for each word in
vocab. Vis[|V| xd]

Instead of having separate E and V, we just tie them together, using E'
instead of V:

e = Ext
h, g(Uh;_; +We,)
7 softmax(ETh,)

RNNs as Language Models

RNNs and
LSTMs

RNNs for Sequences

RNNs and
LSTMs

RNNs for sequence labeling

Assign a label to each element of a sequence

Part-of-speech tagging

Argmax NNP MD VB DT NN

el) o J e [ol o

RNN h
Layer(s)

) |) |) |)
S % 8§ §
M

Words Janet will back the bill

RNNs for sequence classification

Text classification

[Softmax]

N__ S
L\
¢

{
e

Instead of taking the last state, could use some pooling function of all
the output states, like mean pooling 1
hmean — = th
& i=1

:I‘.I
n
Z
A\

Sampled Word
Softmax

Autoregressive generation

©
-
aV/
\
\
IIIIIIIIIIIII
(@)
S
Ow
\
\
IIIIIIIIIIIII
@)
SV/
\
\
IIIIIIIIIIIII
N\
%)
V
= T
= o
3 =
v -
2 o
E =

Stacked RNNSs

Bidirectional RNNs

h]tc — RNNforward(xla e 7xt)

hl; — RNNbackward(Xta e Xn)

h ; h?)
— hloht

h;

Y1 Yo Y3 Yn
B U‘} concatenated
,»%‘W »8 »U outputs ,8ﬂ
-
N RNN 2
RNN 1
X4 Xo X X

Bidirectional RNNs for classification

(Softmax)

/
(FFN>

X

C X)

— '

hy] h,

hyf+ - - RNN 2

g - RNN 1 >h,

RNNs for Sequences

RNNs and
LSTMs

The LSTM

RNNs and
LSTMSs

Motivating the LSTM: dealing with distance

* It's hard to assign probabilities accurately when context is very far away:
* The flights the airline was canceling were full.

* Hidden layers are being forced to do two things:
* Provide information useful for the current decision,
* Update and carry forward information required for future decisions.

* Another problem: During backprop, we have to repeatedly multiply
gradients through time and many h's

* The "vanishing gradient" problem

The LSTM: Long short-term memory network

LSTMs divide the context management problem into two
subproblems:

* removing information no longer needed from the context,
* adding information likely to be needed for later decision making

* LSTMs add:

* explicit context layer
* Neural circuits with gates to control information flow

Forget gate

Deletes information from the context that is no longer needed.

ft — G(Ufht_l—I—fot)
ki = ¢,10f

Regular passing of information

g, = tanh(Ughz—1 —I—ng,;)

Add gate

Selecting information to add to current context

I

)i

o(U;h;_1 +W,;x;)
g Ol

Add this to the modified context vector to get our new context vector.

c: = J; + ki

Output gate

Decide what information is required for the current hidden state (as opposed to what information needs to
be preserved for future decisions).

G(UOht—l -+ WOxt)
o; (» tanh(ct)

O;
h,

The LSTM

-

Ct-1

h.t_1 ——>

— h;

Units

(a)
FEN

(b)
SRN

The LSTM

RNNs and
LSTMs

The LSTM Encoder-Decoder
Architecture

RNNs and
LSTMs

Four architectures for NLP tasks with RNNs

y

))

t t t t t ¢
X4 Xo X X1 Xo X
a) sequence labeling b) sequence classification
e Y2 Ym
t ¢ f
Xo Xg Xt C Decoder RNN)

o

<¢ ! NN ¢> [Context)

(" EncoderRNN)
by * B i

X X X,
1 2 t-1 Xy Xo X

n

c¢) language modeling d) encoder-decoder

3 components of an encoder-decoder

1. An encoder that accepts an input sequence, x1:n, and
generates a corresponding sequence of contextualized

representations, hl:n.

2. A context vector, ¢, which is a function of hl:n, and
conveys the essence of the input to the decoder.

3. A decoder, which accepts c as input and generates an
arbitrary length sequence of hidden states hl:m, from which
a corresponding sequence of output states y1:m, can be

obtained

Encoder-decoder

(Context

e=—

X4 Xo Xn

Encoder-decoder for translation

Regular l[anguage modeling
p(y) = pO1)p2y)p3lyiy2) - pOmlyi, - ym-1)

h, = g(ht—hxz)

7 softmax(h;)

Encoder-decoder for translation

Let x be the source text plus a separate token <s> and
v the target

Let x = The green witch arrive <s>
Lety = llego’” la bruja verde

pylx) = pOilx)p(y2|y1,%) p(31y1,¥2,%) ... pVm| Y15 oo, Ym—1,X)

Encoder-decoder simplified

Target Text
A

o R N
S T A &
llegé | la | bruja | verde | </s>
A N S S B :
softmax ([~ (output of source is ignored) | ' : :
T, 99 9 5
hidden h | JR Sy S Yy B G
layer(s) | l | :
N) A A A A : A : A A ; y
embedding | | : |
layer : : : |
| L, : '
the green witch arrived <s> ! llego | la . bruja | verde
<« y P 4 ~
" . '\/ % : , L
e Separator

Source Text

Encoder-decoder showing context

hd 8(Yt lvht 1,C)

Decoder
A
' N
R //\I //\I //\l
s | s v s
Yo 1 Y2 | Y3 Yy 1 </s>
(output is ignored during encoding) - A | A : A : A : A
Eal=SlE= s =l e}
t t t) : | : :
|
hidden | [h%———>h%——>h®%;——> h¢ =c=hS ol ofh9l | fhY) | fhYl L ke
layer(s) 1 | 2 : 3 : 4 | -
Y x ! X A Sl y R o wl)
embedding = | : i |
| ! ! !
X4 Xo X3 Xn <S§> | 4Y1 |) (YQ i ’y3 | /ym
— _ 7 7 - L

Encoder

Encoder-decoder equations

c = h
hi = c

g()’t 17ht 1,C)
Y, — softmax(hf)

-
~a
|

g is a stand-in for some flavor of RNN
Yy t_1 is the embedding for the output sampled from the softmax at the previous step

"y is @ vector of probabilities over the vocabulary, representing the probability of each
word occurring at time t. To generate text, we sample from this distribution "y, .

Training the encoder-decoder with teacher forcing

Decoder
A
- N
, . gold
Ilelgo Ila brllea verlde </|s> ANSUers
Total loss is the average
cross-entropy loss per L= per-word
target word: loss
! () W W e
f i i f J
> > > > > > > > hidden
layer(s)
\§ A o \? A A A A J
embedding
layer
i i N %
the green witch arrived <S> llegd la bruja verde
— _/
Y

Encoder

The LSTM Encoder-Decoder
Architecture

RNNs and
LSTMs

LSTM Attention

RNNs and
LSTMSs

Problem with passing context ¢ only from end

Requiring the context c to be only the encoder’s final hidden state
forces all the information from the entire source sentence to pass
through this representational bottleneck.

bottleneck Decoder

LR SR

Encoder

Solution: attention

instead of being taken from the last hidden state, the context it’s a
weighted average of all the hidden states of the decoder.

this weighted average is also informed by part of the decoder state as
well, the state of the decoder right before the current token i.

c=f(h{...hj, hi)

Attention

How to compute c?

We'll create a score that tells us how much to focus on each encoder
state, how relevant each encoder state is to the decoder state:

score(h_,h¢) = h{_, - h¢

We’ll normalize them with a softmax to create weights Qi) that tell us
the relevance of encoder hidden state j to hidden decoder state, hd. ,

Qi = softmax(score(h?_l,hj-))

And then use this to help create a weighted average:

C, — E (xijh;
J

Encoder-decoder with attention, focusing on the
computation of ¢

Decoder
.
r N
// l
Vit 1Y
attention :
weights :
Oéij |
|
_ |
hidden hdi-1—:_> he,
layer(s) |
N
T
Yie | Vi
| o«
l

Encoder

LSTM Attention

RNNs and
LSTMs

