
RL and Policy Optimization

James Pustejovsky

CS115B
Brandeis University

April 22, 2025

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 1 / 89

Reinforcement Learning

Definition: Reinforcement Learning (RL) is a framework where an agent
interacts with an environment in discrete or continuous time steps.
Key Elements:

States (s ∈ S): The agent’s observation of the environment.

Actions (a ∈ A): Decisions the agent makes at each step.

Reward (r ∈ R): A scalar feedback signal for each action-state pair.

Policy (πθ(a | s)): Mapping from states to actions (can be
stochastic).

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 2 / 89

Reinforcement Learning

Objective: Maximize cumulative rewards.
Typically formalized as a Markov Decision Process (MDP) ⟨S,A,P,R, γ⟩:

P(s ′ | s, a): Transition probabilities.

R(s, a): Immediate reward.

γ ∈ [0, 1]: Discount factor for future rewards.

Return:

Gt =
∞∑
k=0

γk rt+k .

Goal:
max
θ

Eτ∼πθ
[G (τ)].

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 3 / 89

Trajectories and Interaction

Trajectory (or episode) τ :

(s0, a0, r0, s1, a1, r1, . . . , sT).

Agent-Environment Loop:

1 Agent observes st .

2 Agent samples action at from πθ(at | st).
3 Environment transitions to st+1, yields reward rt .

In Practice:

Episodic tasks have a terminal state (sT).

Continuous tasks can go on indefinitely (with discount γ < 1).

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 4 / 89

Policy Gradient Approach

Policy Gradient Theorem:

∇θJ(θ) = Eτ∼πθ

[
∇θ log πθ(at | st)Qπθ

(st , at)
]
.

Why Policy Gradients?

Directly optimize the policy πθ.

Good for continuous action spaces or when discrete action spaces
are large.

Flexible: We can incorporate function approximators (neural
networks).

Components:

log πθ(at | st): Increases probability of chosen actions.

Qπθ
(st , at): Guides which actions are valuable.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 5 / 89

The Advantage Function

Value Function: Vπθ
(s) = E[Gt | s].

Action-Value (Q) Function:

Qπθ
(s, a) = E[Gt | s, a].

Advantage Function:

Aπθ
(s, a) = Qπθ

(s, a) − Vπθ
(s).

Tells us how much better (or worse) a specific action a is compared
to the average action in state s.

Lower variance policy gradients often estimate Aπθ
to reduce noise.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 6 / 89

Generalized Advantage Estimation (GAE) – Derivation

Temporal Difference Error:

δt = rt + γV (st+1)− V (st)

GAE Formula:

Ât =
∞∑
k=0

(γλ)k δt+k

λ trades off bias and variance.

When λ = 1, high variance; when λ = 0, high bias.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 7 / 89

Fine-Tuning LLMs

Motivation:

Large Language Models (LLMs) are pretrained on massive corpora in
a general-purpose fashion.

Fine-tuning tailors them to:

Specific tasks (e.g., summarization, QA).
Desired style or persona.
Safety and alignment constraints.

Key Questions:

Should we fine-tune all parameters of the LLM?

Are there parameter-efficient methods to reduce cost and memory
usage?

How do we incorporate alignment objectives (e.g., from human
feedback)?

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 8 / 89

Common Fine-Tuning Approaches

1. Full Model Fine-Tuning:

All parameters of the LLM are updated.

Pros: Maximum flexibility, can adapt model deeply.

Cons: Very large memory footprint and computational cost; can
overfit small datasets.

2. Instruction Tuning / SFT:

Supervised Fine-Tuning on curated instructions or examples.

Often used to make LLMs follow prompts more effectively (e.g.,
InstructGPT).

Pros: Relatively straightforward (supervised approach).

Cons: Might still be expensive if done on full parameters; can be
data-hungry.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 9 / 89

Common Fine-Tuning Approaches

3. Parameter-Efficient Methods:

LoRA (Low-Rank Adapters), Prefix Tuning, P-Tuning, Adapters.

Insert small “adapter” modules or “trainable prompts” into the LLM,
freezing most main weights.

Pros: Greatly reduced parameter updates, often robust performance
on specialized tasks.

Cons: Less capacity to drastically alter the model if needed; some
complexities in combining multiple tasks.

Integration with RLHF:

RLHF can be done on top of these methods (e.g., use LoRA + PPO).

Reduces GPU memory usage, enabling practical large-scale alignment.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 10 / 89

Defining Alignment in AI

General Concept of Alignment:

Definition: Alignment refers to how well an AI system’s behaviors,
outputs, or objectives match the intended goals or values specified
by human designers or users.

Why Important?
An unaligned system can produce undesired, harmful, or unsafe
behavior.
In LLMs, misalignment risks spreading misinformation, hate speech, or
otherwise violating user trust.

In Practice:

We often rely on human feedback, policy guidelines, or domain
knowledge to shape the system’s behavior.

Ensuring thorough alignment is an ongoing challenge across AI fields.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 11 / 89

Alignment Challenges for LLMs

Large Language Models (LLMs):

Trained on massive text corpora with no direct supervision of
“right” vs. “wrong” uses.

Might produce biased, offensive, or factually incorrect outputs if not
aligned.

Challenges:

Value Misalignment: The model could generate content that
conflicts with user or societal values (e.g., hateful or disallowed
content).

Hallucination / Fabrication: LLMs can confidently output false
information.

Context Sensitivity: Hard to define alignment in an open-ended
domain (e.g., creative writing vs. factual QA).

Scalability: Aligning giant models that generate billions of tokens or
have billions of parameters is non-trivial.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 12 / 89

Alignment Approaches

High-Level Methods:

Supervised Fine-Tuning: Train on curated datasets of “good” vs.
“bad” outputs.

Reinforcement Learning from Human Feedback (RLHF): Use a
reward model or preference-based signals to shape the model’s policy.

Direct Preference Optimization (DPO): Treat preference data as
supervised signals for pairwise ranking.

Constrained Decoding / Rules: Impose constraints on the
generation process (filter out disallowed content).

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 13 / 89

Aligning LLMs with Human Preferences

Key Goal: Ensure Large Language Models (LLMs) produce:

Helpful responses (accurate, relevant, complete).

Safe content (no harmful, biased, or offensive outputs).

Aligned with ethical, legal, and policy guidelines.

Human Feedback Loop:

Humans (or expert annotators) rank or label model outputs.

Model updates its parameters to better match these preferences.

Two Notable Methods:

PPO (Proximal Policy Optimization): A standard RLHF approach.

DPO (Direct Preference Optimization): A newer, more direct
preference-based method.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 14 / 89

The RLHF Pipeline (High-Level)

1 Pretrained Model: Start with an LLM Mpre trained on large-scale
corpora.

2 Gather Human Feedback:
Show model outputs for prompts to human annotators.
Collect preference labels or rankings (e.g., which output is best).

3 Reward Model (RM):
Convert human preference data into a reward function or scoring model.
The RM approximates how “good” a response is.

4 Policy Optimization:
Fine-tune Mpre (now called πθ) using RL or direct preference
optimization.
Output: A final policy πθ∗ that yields higher reward (i.e., better
alignment with preferences).

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 15 / 89

Policy Gradient Concept (Mini-Refresher)

Policy: πθ(a | s) is a probability distribution over actions a given state s.
Goal: Maximize expected return (or reward),

J(θ) = Eτ∼πθ

[
T∑
t=0

r(st , at)

]
.

where τ is a trajectory (s0, a0, . . . , sT , aT) generated by policy πθ.
Policy Gradient Theorem:

∇θJ(θ) = Eτ∼πθ
[∇θ log πθ(at | st)Qπθ

(st , at)] .

In language modeling:

States st can be the text context so far.

Actions at are tokens or text chunks to generate.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 16 / 89

TRPO: Overview

Trust Region Policy Optimization (TRPO) aims to:

Prevent overly large, destabilizing updates.

Constrain the change between πθnew and πθold using KL divergence.

Application: Stabilizes fine-tuning of LLMs.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 17 / 89

TRPO Basics

Objective:

max
θ

Êt

[
πθ(at |st)
πθold(at |st)

Ât

]
Subject to:

Êt

[
KL
(
πθold(·|st) ∥πθ(·|st)

)]
≤ δ

δ controls how ”close” the new policy must remain.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 18 / 89

TRPO: Detailed Derivation

Lagrangian Formulation:

L(θ, λ) = Êt

[
πθ(at |st)
πθold(at |st)

Ât

]
− λ

(
Êt [KL(πθold ||πθ)]− δ

)

Solved using conjugate gradient methods.

λ is the Lagrange multiplier enforcing the KL constraint.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 19 / 89

TRPO: Example Discussion

Example: Fine-tuning a summarization model.

State: The current summary and context.

Action: Next word/token generated.

Reward: Derived from a reward model assessing summary quality.

KL Constraint: Prevents the model from ”forgetting” its fluency
learned during pretraining.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 20 / 89

TRPO: Pros and Cons

Pros:

Theoretical guarantees on improvement.

Effective in safety-critical tasks.

Cons:

Requires second-order optimization (computationally intensive).

More complex to implement.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 21 / 89

Policy Gradients?

In Reinforcement Learning (RL), the agent aims to maximize
cumulative reward.

Policy gradients are a direct way to optimize the parameters of a
policy πθ(a | s).
Avoid the complexities of value function approximation (although
hybrids exist).

REINFORCE is the most straightforward policy gradient method.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 22 / 89

REINFORCE Algorithm (High-Level)

Also known as the Monte Carlo Policy Gradient.

Key idea: update policy parameters θ in the direction of better
returns.

Simple update rule:

∆θ ∝
∑
t

∇θ log πθ(at | st)Gt

Gt is the return following time t.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 23 / 89

Return and Trajectories

For an episode τ = (s0, a0, r1, s1, . . . , sT−1, aT−1, rT),

Gt =
T−t−1∑
k=0

γk rt+k+1

γ ∈ [0, 1] is the discount factor.

REINFORCE uses full-episode returns to update parameters.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 24 / 89

Derivation of the Gradient

J(θ) = Eτ∼πθ
[G (τ)]

∇θJ(θ) = Eτ∼πθ
[G (τ)∇θ log πθ(τ)]

πθ(τ) =
∏T−1

t=0 πθ(at | st).
By taking ∇θ log πθ(τ), we get the sum of logs over actions.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 25 / 89

Single-Step Example

For a single-step environment (bandit), G (τ) = r(a).

Update:
∆θ ∝ E

[
r(a)∇θ log πθ(a)

]
.

This can be high variance if r(a) is noisy.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 26 / 89

Baselines and Variance Reduction

REINFORCE often uses a baseline b(s) to reduce variance:

∆θ ∝
∑
t

(Gt − b(st))∇θ log πθ(at | st).

If b(s) is a good approximation of the value function V π(s), variance
is greatly reduced.

Does not introduce bias if b(s) is state-dependent but not
action-dependent.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 27 / 89

Algorithmic Steps

1 Initialize policy parameters θ.
2 Repeat (for each episode):

Generate an episode using πθ.
For each time step t:

Compute return Gt .
Update:

θ ← θ + α (Gt − b(st))∇θ log πθ(at | st).

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 28 / 89

The Objective J(θ)

J(θ) = Eτ∼πθ

[
G (τ)

]
=
∑
τ

(T−1∏
t=0

πθ(at | st)P(st+1 | st , at)
)
G (τ).

Typically in discrete action spaces, πθ(a | s) is parameterized via a
softmax of logits.

In continuous action spaces, πθ could be Gaussian.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 29 / 89

Gradient Trick

∇θJ(θ) =
∑
τ

(
∇θ

T−1∏
t=0

πθ(at | st)

)
P(τ)G (τ).

=
∑
τ

(
T−1∏
t=0

πθ(at | st)

)(
T−1∑
t=0

∇θ log πθ(at | st)

)
G (τ).

= Eτ∼πθ

[
G (τ)

T−1∑
t=0

∇θ log πθ(at | st)

]
.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 30 / 89

Incremental Updates

In practice, we sample a batch of episodes and approximate the
expectation.

Single-trajectory gradient estimate:

∆θ = αG (τ)
T−1∑
t=0

∇θ log πθ(at | st).

This is unbiased but can have high variance.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 31 / 89

Pros and Cons of REINFORCE

Pros

Conceptually simple and easy to implement.

Does not require value function approximation.

Can be used in any differentiable policy setting (discrete or
continuous).

Cons

High variance updates.

Slower convergence compared to methods that use critics (e.g.,
Actor-Critic).

Full returns needed (episode-based), which can be expensive for long
horizons.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 32 / 89

RL for Language Models

In large language models (LLMs), the “environment” can be seen as
the text generation process.

Actions are tokens, states are partial sequences.

Rewards come from preference models, user feedback, or automated
metrics.

REINFORCE can directly optimize these rewards, but naive
application may be unstable.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 33 / 89

Typical RLHF (PPO)

Proximal Policy Optimization (PPO) is more common for RLHF.

Clipped updates reduce catastrophic changes to the language model.

Still a policy gradient approach, but with more stability than pure
REINFORCE.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 34 / 89

Direct Preference Optimization (DPO)

A new approach that “removes the RL” from RLHF by deriving a
closed-form solution for the updated policy.

Key idea: Reweight the pretrained policy distribution by
exp(RMϕ(x , y)/β).

Conceptually linked to policy gradient ideas—especially the
exponential family perspective.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 35 / 89

From REINFORCE to DPO

REINFORCE perspective:

∆θ ∝ R∇θ log πθ.

If reward is RMϕ(x , y), and we have a KL penalty to the pretrained
model log pPT, you can solve for π∗ in closed form.

DPO (and related methods) exploit this closed-form “Boltzmann”
distribution.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 36 / 89

Connection to Exponential Families

REINFORCE with reward R(y) and KL to a base distribution leads to:

π∗(y) ∝ pPT(y) exp
(
1
βR(y)

)
.

This is the same functional form as a Boltzmann distribution in
statistical physics.

DPO leverages this fact to skip iterative policy gradient loops.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 37 / 89

Practical Implications for LLMs

Efficiency: DPO can be more direct, but still may require sampling to
estimate normalization constants.

Stability: REINFORCE alone can be unstable for large models, so
often a mix of ideas (KL control, baselines, etc.) is used.

Interpretability: The Boltzmann form gives a clear interpretation of
how reward and prior combine.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 38 / 89

When to Use REINFORCE vs. DPO

REINFORCE:

Good for simple or small-scale tasks.
Straightforward to implement, but may need variance reduction.

DPO:

More direct approach if you have a stable reward model.
Avoids iterative RL, but normalization can be tricky in large
vocabularies.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 39 / 89

PPO Overview

Proximal Policy Optimization (PPO) [1]:

A trust-region style algorithm that avoids large destructive updates.

Motivation: Traditional policy gradient methods can produce large
policy steps, leading to training instability.

Solution: PPO clips the policy update to keep πθ close to the old
policy πθold .

In RLHF:

The reward model Rϕ(·) is learned from human preferences.

PPO updates the language model’s parameters θ to maximize reward,
subject to constraints.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 40 / 89

PPO Clipped Objective

Probability Ratio:

rt(θ) =
πθ(at | st)
πθold(at | st)

.

Clipped Surrogate Objective:

LPPO(θ) = Êt

[
min
(
rt(θ)Ât , clip(rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
,

where

Ât is an estimator of the advantage function,

ϵ is a small hyperparameter (e.g., 0.1 or 0.2).

Interpretation:

If rt(θ) goes outside (1− ϵ, 1 + ϵ), the objective stops encouraging
that deviation as strongly.

Prevents overly large policy shifts that could destabilize performance.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 41 / 89

Advantage Function & Estimation

Advantage Function:

Aπθ
(st , at) = Qπθ

(st , at)− Vπθ
(st),

where

Qπθ
(st , at) is the action-value function,

Vπθ
(st) is the state-value function.

In practice, we often use GAE (Generalized Advantage Estimator) [2]:

Ât ≈
∞∑
k=0

(γλ)kδt+k ,

where δt = rt + γV (st+1)− V (st).
In Language Tasks:

Ât helps measure how good a generated token/sequence is relative to
a baseline.

The reward can be partial (at each token) or only at the end of the
generated text.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 42 / 89

PPO in Practice for LLMs

1 Collect samples: Given prompts, the LLM generates text using the
current policy πθ.

2 Evaluate with Reward Model: A separate network Rϕ assigns a
scalar reward r to the generated response.

3 Compute Advantage: Estimate Ât using the difference between the
reward and the baseline (e.g., value function).

4 Policy Update:
θ ← θ + α∇θLPPO(θ).

5 Repeat: Iterate this process with updated θ.

Benefits of PPO:

Relatively stable training due to clipping.

Widely adopted in large-scale RLHF (e.g., ChatGPT).

Challenges:

Requires a well-trained reward model (potential noise or bias).

Still computationally expensive (multiple passes, large batch sizes).

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 43 / 89

PPO Example (Hypothetical)

Scenario: Summarization of a news article.

1 Prompt / State (s): The article text.

2 Action (a): The next token (or chunk) in the summary.

3 Reward (r): Higher if the summary is concise, accurate, and
well-structured (as judged by Rϕ).

4 Policy Update: PPO adjusts θ to increase probability of
better-summarizing tokens.

Illustration of Clipping:

rt(θ) =
πθ(“the” | st)
πθold(“the” | st)

.

If rt(θ) is too large, the gradient is clipped to prevent big updates.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 44 / 89

Strengths and Weaknesses of PPO

Strengths:

Robustness: Clipped objective prevents extreme policy updates.

Ease of Use: Reasonably straightforward hyperparameters (clip
range, etc.).

Track Record: Proven in many RL tasks, widely used in LLM RLHF
contexts.

Weaknesses:

Complexity: Requires training or maintaining a reward model +
value function.

Computation-Heavy: Often large batch sizes and iterative updates.

Reward Model Bias: If the reward model is inaccurate, it can
mislead the policy updates.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 45 / 89

DPO Overview

Direct Preference Optimization (DPO):

A more recent technique that directly uses preference labels without
a traditional RL loop.

Idea: For each pair of responses (y+, y−) where y+ is preferred,
increase the likelihood of y+ and decrease that of y−.

Often realized via pairwise comparisons and a logistic-like loss.

Advantage:

Fewer moving parts: No explicit reward or value function is needed.

Simple training objective: Similar to supervised preference learning.

Potential Limitations:

Less established for large-scale tasks than PPO-based methods.

Might not handle complex long-horizon tasks as effectively (ongoing
research).

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 46 / 89

Formal DPO Objective

Pairwise Preference Setting:

D = {(x , y+, y−)},

where x is the prompt or context, and y+ is the preferred output over y−.
Loss Function (Logistic):

LDPO(θ) = −
∑

(x ,y+,y−)∈D

log
(
σ(∆θ(x , y

+, y−))
)
,

where
∆θ(x , y

+, y−) = log pθ(y
+ | x)− log pθ(y

− | x),

and σ is the logistic sigmoid.
Goal: Minimize LDPO(θ) which maximizes the likelihood of the preferred
response.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 47 / 89

Interpretation of the DPO Loss

Term-by-term Explanation:

log pθ(y
+ | x): Log-likelihood of the preferred response.

log pθ(y
− | x): Log-likelihood of the non-preferred response.

∆θ(x , y
+, y−): If ∆θ is large positive, it means pθ(y

+ | x) is much
higher than pθ(y

− | x).
σ(∆θ): Approaches 1 if y+ is strongly more likely than y−;
approaches 0.5 if they are equally likely.

Loss Minimization:

− log(σ(∆θ)) is low when ∆θ ≫ 0.

Hence, we push ∆θ to be positive and large, favoring y+ over y−.

Relates to Binary Classification:

Just as logistic regression separates classes, DPO separates
“preferred” vs. “non-preferred” responses.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 48 / 89

DPO Training Procedure

1 Collect Pairwise Preferences:
For each prompt x , obtain a pair (y+, y−) where y+ is chosen by
human raters over y−.

2 Compute Gradients:

∇θLDPO(θ) =
∑

(x ,y+,y−)

∇θ

(
− log

(
σ(∆θ(x , y

+, y−))
))

.

3 Parameter Update:

θ ← θ − η∇θLDPO(θ).

4 Iterate: Repeat until convergence or a fixed number of epochs.

No Need for:

Value function or advantage estimation.

Trust-region or clipping (as in PPO).

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 49 / 89

Example of DPO

Scenario: Chatbot Q&A.

Prompt (x): “What are some good restaurants in Paris?”

Candidate Answers:

y+ = “Le Meurice is famous for fine dining. ...”

y− = “Not sure. I like pizza.”

Humans prefer y+ over y− (more informative, relevant).

DPO Step:

∆θ(x , y
+, y−) = log pθ(“Le Meurice ...” | x)− log pθ(“Not sure ...” | x).

DPO pushes log pθ(y
+ | x) higher, log pθ(y− | x) lower.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 50 / 89

Strengths and Weaknesses of DPO

Strengths:

Simplicity: Direct pairwise optimization, no need for separate reward
or value networks.

Efficiency: Fewer hyperparameters than RL-based methods (no
clipping range, advantage function, etc.).

Interpretability: Closer to supervised learning on preferences.

Weaknesses:

Limited Evidence at Scale: Fewer large-scale success stories
compared to PPO-based RLHF.

Potential Myopia: Doesn’t explicitly account for multi-step or
long-horizon dependencies (open question in research).

Data Requirements: Needs sufficient pairwise preference data,
which can be expensive to collect.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 51 / 89

PPO vs. DPO – The Core Differences

Aspect PPO DPO

Core Idea RL with reward model Direct optimization of preferences
Training Infrastructure Reward model + policy + value net Just preference pairs + model
Objective Type Clipped surrogate RL objective Logistic preference loss
Complexity Higher (advantage, value function, etc.) Lower (no explicit value function)
Parameter Updates Constrained by trust region Unconstrained preference gradient
Stability Well-studied, stable Newer, fewer known pitfalls
Use Cases ChatGPT, large-scale RLHF Potentially simpler alignment tasks

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 52 / 89

Practical Considerations

When to Use PPO:

You already have or plan to build a reward model.

You are comfortable with RL frameworks (value functions, advantage
estimation, etc.).

You want a proven method with a robust track record.

When to Use DPO:

You have high-quality pairwise preference data and want a simpler
pipeline.

You want to avoid some overhead of RL (training a value net,
computing advantage).

You have tasks where direct ranking is sufficient.

Hybrid Approaches?:

Potential to combine direct preference optimization with partial RL
steps.

Ongoing research on bridging the two approaches.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 53 / 89

Example Use Cases

PPO-based Alignments:

ChatGPT: Large-scale RLHF, iterative improvement via user
feedback.

Content Moderation Systems: Reward model that heavily penalizes
disallowed content, PPO updates policy.

Dialogue Agents: Where the reward is shaped by user satisfaction or
correctness signals.

DPO-based Alignments:

Simple QA Systems: If you have pairs of good vs. bad answers.

Summaries / Headlines: If you have pairs of “better summary” vs.
“worse summary.”

Low-Resource Settings: Quick turn-around with preference pairs
from smaller user studies.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 54 / 89

Thoughts

PPO is a well-established RL method with strong stability, widely
used in RLHF.

DPO is a direct preference-based approach that removes some RL
complexity but is newer and less tested at scale.

Both aim for aligned, human-preferred outputs in LLMs—core to
safe, helpful AI.

Open Questions:

How to combine the best of both worlds (RL + direct preferences)?

How to design robust reward models that generalize across many
domains?

How to handle long-horizon interactions for chat or multi-step
reasoning?

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 55 / 89

DeepSeek V3: Mixture of Experts (MoE)

Introduction to the MoE approach in DeepSeek Zero.

Leverages expert sub-networks with a dynamic gating mechanism.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 56 / 89

What is Mixture of Experts (MoE)?

A neural network design where multiple specialized expert models are
combined.

A gating network determines which experts are activated per input.

Enables conditional computation: only a subset of experts are used
per example.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 57 / 89

High-Level Architecture Overview

DeepSeek V3 integrates a shared backbone with many expert
modules.

The gating network routes each input to the most relevant experts.

Final output is a weighted aggregation of the selected expert outputs.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 58 / 89

Key Components

Gating Network: Processes the input to compute routing
probabilities.

Expert Networks: Sub-models that specialize in different aspects of
the data.

Their combined interaction allows for a large effective capacity.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 59 / 89

MoE Components

For an input x, let Ei (x) be the output of expert i .

The gating network produces weights gi (x) via a softmax:

gi (x) =
exp(Wix)∑N
j=1 exp(Wjx)

The overall model output is:

f (x) =
N∑
i=1

gi (x)Ei (x)

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 60 / 89

Sparse Gating Mechanism

In practice, only the top-k experts (e.g., k = 2) are activated per
input.

The gating function is modified to:

gi (x) =

{
exp(Wix)∑

j∈S(x) exp(Wjx)
, i ∈ S(x)

0, otherwise

Here, S(x) represents the indices of the top-k experts.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 61 / 89

Load Balancing and Regularization

To avoid over-reliance on a few experts, a load balancing loss is
added:

Lbalance = λ

N∑
i=1

(
ci∑
j cj
− 1

N

)2

ci counts the number of times expert i is selected.

λ is a hyperparameter controlling the regularization strength.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 62 / 89

Expert Network Architecture

Each expert is typically a feed-forward or convolutional sub-network.

They may include:

Dense layers with activation functions (e.g., ReLU).
Residual connections for deeper architectures.

Experts are trained jointly with the gating network.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 63 / 89

Integration in DeepSeek Zero

DeepSeek Zero uses DeepSeek V3’s MoE to improve scalability.

Conditional computation allows a massive increase in capacity
without proportional cost.

Empirical results demonstrate enhanced performance on diverse tasks.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 64 / 89

DeepSeek Zero: Overview

Consists solely of transformer decoder layers.

Each layer integrates MoE modules to enhance model capacity.

The MoE allows dynamic routing to expert sub-networks within each
decoder layer.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 65 / 89

Decoder-Only Transformer Basics

Uses self-attention to capture contextual dependencies.

Computes hidden states via:

h(l) = DecoderLayer(h(l−1))

The final hidden state is used for next-token prediction.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 66 / 89

Integrating Mixture of Experts

MoE modules are interleaved within selected decoder layers.

For a given hidden state h, experts provide specialized
transformations.

A gating network determines the contribution of each expert.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 67 / 89

Gating Network Details

For each hidden state h, compute gating scores for N experts:

gi (h) =
exp(w⊤

i h)∑N
j=1 exp(w

⊤
j h)

These scores determine which experts to activate.

Typically, only the top-k experts are selected to reduce computation.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 68 / 89

Expert Module Processing

Each expert Ei processes the hidden state:

Ei (h) = σ (W2,i ReLU(W1,ih))

Experts are typically simple feed-forward networks.

Their outputs are combined based on the gating scores.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 69 / 89

Sparse Activation and Aggregation

With top-k selection, the gating function becomes:

gi (h) =

exp(w⊤

i h)∑
j∈S(h) exp(w

⊤
j h)

, i ∈ S(h)

0, otherwise

The aggregated output for the MoE layer is:

f (h) =
∑

i∈S(h)

gi (h)Ei (h)

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 70 / 89

Loss Functions and Regularization

The primary loss is typically a cross-entropy loss over next-token
prediction.

A load balancing loss is added to ensure even expert utilization:

Lbalance = λ

N∑
i=1

(
ci∑N
j=1 cj

− 1

N

)2

Here, ci counts the number of times expert i is selected, and λ is a
hyperparameter.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 71 / 89

Training and Inference Dynamics

Training is performed end-to-end using gradient descent (e.g., Adam
optimizer):

θt+1 = θt − α
m̂t√
v̂t + ϵ

During inference, only the selected experts are computed, enhancing
efficiency.

This conditional computation leads to significant computational
savings.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 72 / 89

DeepSeek-R1 Overview

Objective: Enhance reasoning capabilities of large language models
(LLMs) using reinforcement learning (RL).

Models Introduced:
DeepSeek-R1-Zero: Trained purely with RL (no supervised
fine-tuning at the start).

Develops advanced reasoning behaviors (e.g., self-verification, long
chain-of-thought).
Faces issues like language mixing and poor readability.

DeepSeek-R1: Improves on R1-Zero by incorporating a small set of
cold-start data and multi-stage training.

Achieves performance comparable to state-of-the-art models (e.g.,
OpenAI-o1 series).
Produces more coherent and human-friendly outputs.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 73 / 89

Group Relative Policy Optimization

Traditional policy gradient methods (e.g. PPO) rely on a large critic
network to estimate the value function.

GRPO (Group Relative Policy Optimization):
Avoids maintaining a large critic model.
Estimates advantage within a group of sampled outputs.
Reduces computational overhead, making large-scale RL more
tractable.

DeepSeek Context:
Large Language Models (LLMs) demand huge compute and memory.
GRPO serves as a more efficient RL approach to improve reasoning in
LLMs.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 74 / 89

GRPO: Policy Update Objective

Core Objective Function:
JGRPO(θ) = E

[
q ∼ P(Q), {oi}Gi=1 ∼ πθold

(o | q)
][

1
G

∑G
i=1

(
min

(
ri (θ) · Ai , clip

(
ri (θ), 1 − ϵ, 1 + ϵ

)
· Ai

)
−β DKL

(
πθ ∥ πref

))]

q: Query/prompt from distribution P(Q).

{oi}: A group of outputs sampled under the old policy πθold .

ri (θ) =
πθ(oi | q)
πθold(oi | q)

: Probability ratio.

clip(·, 1− ϵ, 1 + ϵ): Constrains how far updates can deviate from old
policy.

β: Coefficient for KL penalty to a reference policy πref .

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 75 / 89

Group-Based Advantage: Ai

Rather than using a learned value function, GRPO relies on:

Ai =
renv,i − µ

σ

where:
renv,i is the environment reward (or multi-part reward) for the i-th
output oi .
µ = mean({renv,j}Gj=1) is the average reward within the group.

σ = std({renv,j}Gj=1) is the standard deviation of rewards within the
group.

Intuition:
Compare each sample’s reward to the average reward of the same
mini-batch group.
No need for a separate critic model to estimate expected returns.

Benefit:
Reduces memory footprint and training complexity.
Large-scale RL becomes more feasible for LLMs (DeepSeek).

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 76 / 89

Applying GRPO to LLMs (DeepSeek Example)

LLM Setup:
A base language model πθold .
We collect multiple outputs for each prompt q.

Group Sampling:
1 For each prompt q, sample a group {o1, . . . , oG}.
2 Evaluate each output oi via a reward function:

renv,i = racc + rformat + . . .

(e.g., math correctness, chain-of-thought format, language
consistency).

Update Step:
θ ← θ − η∇θJGRPO(θ)

Uses the clip(·) mechanism to bound large deviations in πθ.
Adds a KL term to keep πθ close to a reference policy (often πθold or a
baseline).

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 77 / 89

Multi-Part Rewards in DeepSeek

renv,i = raccuracy(oi) + rformat(oi) + rlang(oi) + . . .

Accuracy Reward: For math or coding tasks, check correctness
(e.g., verifying final numeric answer).

Format Reward: Enforce chain-of-thought or designated tags
(“<think>, <answer>”).

Language Consistency Reward: Penalize code-switching or mixing
of multiple languages when undesired.

Optional: Additional sub-rewards for style, helpfulness, alignment,
etc.

Group Normalization

Reward signals are normalized within each sampled group, ensuring high or
low rewards are relative to other group members.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 78 / 89

Why GRPO is Attractive for DeepSeek

Reduced Critic Complexity:
Typical PPO includes a critic as large as the policy (huge overhead for
10B+ parameter LLMs).
GRPO avoids training/maintaining a large value network.

Stabilized Policy Updates:
Clip ratio approach (like PPO) prevents overly large gradient updates.
KL penalty ensures the updated policy remains close to a reference,
mitigating collapse.

Scalable to LLMs:
Group advantage estimation leverages mini-batches of rollouts at scale.
Feasible to run large-scale RL on reasoning tasks (math/coding).

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 79 / 89

Potential Limitations

Group-Dependent Signal:
Advantage depends on the distribution of rewards within a group.
Highly variable groups could destabilize updates.

Reward Engineering:
Multiple sub-rewards may cause reward hacking if not carefully
balanced.

Exploration vs. Exploitation:
With fewer guided signals (compared to a learned critic), exploration
might be riskier in early training.

Sensitivity to Prompt/Task Distribution:
If the training set does not reflect real usage, the learned policy can
overfit to specific reward structures.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 80 / 89

Discussion Points

1 Comparing GRPO vs. PPO:
When might a learned value function still be advantageous?
Does group-based advantage scaling degrade with very large group
sizes?

2 Reward Curves and Annealing:
Should the KL penalty β change over time to allow more exploration or
exploitation?
How to best schedule ϵ-clipping for policy ratio?

3 Alignment with Human Preferences:
Incorporating user feedback in the RL loop (helpfulness, harmlessness).
Balancing correctness and alignment with minimal label overhead.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 81 / 89

Methodology and Pipeline

Reinforcement Learning Approach:
Utilizes Group Relative Policy Optimization (GRPO) to avoid a
heavy critic model.
Employs a rule-based reward system:

Accuracy Rewards: Verify correct answers (e.g., math problems, code
outputs).
Format Rewards: Ensure outputs follow a designated chain-of-thought
(CoT) structure.

Self-Evolution:
The model naturally extends its CoT length and rethinks its approach
(“aha moments”).

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 82 / 89

Cold Start & Multi-Stage Training (DeepSeek-R1)

Cold Start: Fine-tune the base model with a curated set of long CoT
examples.

Multi-Stage Pipeline:
Stage 1: Initial RL training on the cold-start fine-tuned model.
Stage 2: Use rejection sampling to generate additional supervised
fine-tuning (SFT) data.
Stage 3: A final RL stage refines the model with broader prompts and
human-friendly rewards.

Outcome: Improved readability, language consistency, and overall
reasoning performance.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 83 / 89

Distillation to Smaller Models

Reasoning capabilities learned by DeepSeek-R1 are distilled into
smaller models (1.5B to 70B parameters).

Distillation transfers the advanced reasoning skills efficiently.

Smaller distilled models sometimes outperform counterparts trained
solely with RL.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 84 / 89

Experimental Evaluation

Benchmarks:
Mathematics: AIME 2024, MATH-500, CNMO.
Coding: Codeforces, LiveCodeBench.
Knowledge and Long-Context: MMLU, SimpleQA, FRAMES.

Metrics: Pass@1 scores, Elo ratings, accuracy percentages.

Results:
DeepSeek-R1 achieves performance comparable to OpenAI-o1.
Significant improvements over earlier models (e.g., DeepSeek-V3).

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 85 / 89

Discussion and Future Directions

RL vs. Distillation:
RL directly improves reasoning but can be computationally expensive.
Distillation is an economical alternative for deploying reasoning in
smaller models.

Challenges:
Issues such as language mixing, sensitivity to prompt formulations, and
limited performance in non-reasoning domains.

Future Research:
Enhancing multi-turn dialogue, structured outputs (e.g., JSON), and
long chain-of-thought strategies.
Addressing scalability and efficiency in large-scale RL.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 86 / 89

Talking Points

Reinforcement Learning in LLMs:
How does RL drive advanced reasoning capabilities in LLMs?
Benefits of GRPO over traditional actor-critic methods.

Supervised Fine-Tuning vs. Pure RL:
Trade-offs between starting with pure RL (DeepSeek-R1-Zero) versus
using cold-start data.

Reward Engineering:
Discussion on rule-based rewards and the potential of neural reward
models.

Emergent Behaviors:
Importance of extended chain-of-thought processes and the emergence
of “aha moments.”

Distillation Techniques:
How can reasoning capabilities be effectively transferred to smaller
models?

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 87 / 89

Discussion Questions

1 How does pure RL compare with a cold-start and multi-stage training
pipeline in terms of performance and learning efficiency?

2 What challenges arise when using rule-based reward models, and how
might neural reward models mitigate these issues?

3 In what ways do extended chain-of-thought processes and “aha
moments” enhance a model’s reasoning abilities?

4 What are the benefits and limitations of distilling large teacher models
into smaller student models, especially under resource constraints?

5 How well do current benchmarks capture the depth of reasoning, and
what improvements could be made in future evaluations?

6 Considering the computational demands of large-scale RL, what
strategies could improve the scalability and practicality of these
models?

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 88 / 89

References

Schulman, J. et al. (2017). Proximal Policy Optimization Algorithms. arXiv preprint
arXiv:1707.06347.

Schulman, J. et al. (2015). High-Dimensional Continuous Control Using
Generalized Advantage Estimation. arXiv preprint arXiv:1506.02438.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 89 / 89

	Fundamentals of Reinforcement Learning
	Policy Gradient Basics
	LLM Fine-Tuning Architectures
	What is Alignment?
	Motivation and Background
	Trust Region Policy Optimization (TRPO)
	Motivation and Overview
	Fundamentals of REINFORCE
	Deep Dive
	Importance for LLM Fine-Tuning
	Proximal Policy Optimization (PPO)
	Direct Preference Optimization (DPO)
	Comparisons and Practical Considerations
	DeepSeek V3 Architecture and Mixture of Experts
	DeepSeek Zero
	DeepSeek-R1: Enhancing Reasoning in LLMs
	GRPO: Core Methodology
	Incorporating GRPO in DeepSeek
	Advantages and Limitations
	Discussion and Future Directions
	Talking Points and Discussion Questions

