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Reinforcement Learning

Definition: Reinforcement Learning (RL) is a framework where an agent
interacts with an environment in discrete or continuous time steps.
Key Elements:

o States (s € §): The agent's observation of the environment.
@ Actions (a € A): Decisions the agent makes at each step.
e Reward (r € R): A scalar feedback signal for each action-state pair.

e Policy (my(a | s)): Mapping from states to actions (can be
stochastic).
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Reinforcement Learning

Objective: Maximize cumulative rewards.

Typically formalized as a Markov Decision Process (MDP) (S, A, P, R, ~):
e P(s’|s,a): Transition probabilities.
@ R(s,a): Immediate reward.

e 7 € [0,1]: Discount factor for future rewards.
Return:

G = ZVk Fe+k-
k=0
Goal:
max Err,[G(T)].
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Trajectories and Interaction

Trajectory (or episode) 7:

(s0, a0, ro, S1, a1, M, - -, ST)-

Agent-Environment Loop:

© Agent observes s;.

@ Agent samples action a; from mg(a; | st).

© Environment transitions to s;41, yields reward r;.
In Practice:

e Episodic tasks have a terminal state (s7).

e Continuous tasks can go on indefinitely (with discount v < 1).
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Policy Gradient Approach

Policy Gradient Theorem:
VoJ(0) = Ernr, |Volog mg(ar | st) Qr,(st, at)]

Why Policy Gradients?
@ Directly optimize the policy my.
@ Good for continuous action spaces or when discrete action spaces

are large.
@ Flexible: We can incorporate function approximators (neural

networks).

Components:
@ log mg(at | st): Increases probability of chosen actions.

® Qr,(st,ar): Guides which actions are valuable.
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The Advantage Function

Value Function: V,, (s) = E[G; | s].
Action-Value (Q) Function:
Qﬂ9(5> a) = E[Gt | S, a]'

Advantage Function:

Am)(sva) = Qﬁa(s>a) - Vﬁe(s)'

@ Tells us how much better (or worse) a specific action a is compared
to the average action in state s.

@ Lower variance policy gradients often estimate A;, to reduce noise.
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Generalized Advantage Estimation (GAE) — Derivation

Temporal Difference Error:
6r = re +yV(se+1) — V(st)

GAE Formula: -
/A\t = Z('Y/\)k Otk
k=0

@ ) trades off bias and variance.
@ When A =1, high variance; when A = 0, high bias.
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Fine-Tuning LLMs

Motivation:

@ Large Language Models (LLMs) are pretrained on massive corpora in

a general-purpose fashion.
@ Fine-tuning tailors them to:

o Specific tasks (e.g., summarization, QA).
o Desired style or persona.
o Safety and alignment constraints.

Key Questions:
@ Should we fine-tune all parameters of the LLM?

@ Are there parameter-efficient methods to reduce cost and memory
usage?

e How do we incorporate alignment objectives (e.g., from human
feedback)?
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Common Fine-Tuning Approaches

1. Full Model Fine-Tuning:
@ All parameters of the LLM are updated.
@ Pros: Maximum flexibility, can adapt model deeply.

@ Cons: Very large memory footprint and computational cost; can
overfit small datasets.

2. Instruction Tuning / SFT:
Supervised Fine-Tuning on curated instructions or examples.

e Often used to make LLMs follow prompts more effectively (e.g.,
InstructGPT).

Pros: Relatively straightforward (supervised approach).

Cons: Might still be expensive if done on full parameters; can be
data-hungry.
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Common Fine-Tuning Approaches

3. Parameter-Efficient Methods:

LoRA (Low-Rank Adapters), Prefix Tuning, P-Tuning, Adapters.
Insert small “adapter” modules or “trainable prompts” into the LLM,
freezing most main weights.

Pros: Greatly reduced parameter updates, often robust performance
on specialized tasks.

Cons: Less capacity to drastically alter the model if needed; some
complexities in combining multiple tasks.

Integration with RLHF:

RLHF can be done on top of these methods (e.g., use LoRA + PPO).

Reduces GPU memory usage, enabling practical large-scale alignment.
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Defining Alignment in Al

General Concept of Alignment:

@ Definition: Alignment refers to how well an Al system’s behaviors,
outputs, or objectives match the intended goals or values specified
by human designers or users.

e Why Important?

e An unaligned system can produce undesired, harmful, or unsafe
behavior.

e In LLMs, misalignment risks spreading misinformation, hate speech, or
otherwise violating user trust.

In Practice:

@ We often rely on human feedback, policy guidelines, or domain
knowledge to shape the system’s behavior.

@ Ensuring thorough alignment is an ongoing challenge across Al fields.
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Alignment Challenges for LLMs

Large Language Models (LLMs):

@ Trained on massive text corpora with no direct supervision of
“right” vs. “wrong” uses.
@ Might produce biased, offensive, or factually incorrect outputs if not
aligned.
Challenges:
o Value Misalignment: The model could generate content that

conflicts with user or societal values (e.g., hateful or disallowed
content).

e Hallucination / Fabrication: LLMs can confidently output false
information.

o Context Sensitivity: Hard to define alignment in an open-ended
domain (e.g., creative writing vs. factual QA).

@ Scalability: Aligning giant models that generate billions of tokens or
have billions of parameters is non-trivial.
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Alignment Approaches

High-Level Methods:

o Supervised Fine-Tuning: Train on curated datasets of “good” vs.
“bad” outputs.

o Reinforcement Learning from Human Feedback (RLHF): Use a
reward model or preference-based signals to shape the model’s policy.

e Direct Preference Optimization (DPO): Treat preference data as
supervised signals for pairwise ranking.

e Constrained Decoding / Rules: Impose constraints on the
generation process (filter out disallowed content).
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Aligning LLMs with Human Preferences

Key Goal: Ensure Large Language Models (LLMs) produce:
o Helpful responses (accurate, relevant, complete).
e Safe content (no harmful, biased, or offensive outputs).

o Aligned with ethical, legal, and policy guidelines.

Human Feedback Loop:

@ Humans (or expert annotators) rank or label model outputs.

@ Model updates its parameters to better match these preferences.
Two Notable Methods:

e PPO (Proximal Policy Optimization): A standard RLHF approach.

e DPO (Direct Preference Optimization): A newer, more direct
preference-based method.
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The RLHF Pipeline (High-Level)

© Pretrained Model: Start with an LLM M. trained on large-scale
corpora.
@ Gather Human Feedback:

e Show model outputs for prompts to human annotators.
o Collect preference labels or rankings (e.g., which output is best).

© Reward Model (RM):
o Convert human preference data into a reward function or scoring model.
o The RM approximates how “good” a response is.
@ Policy Optimization:
o Fine-tune M, (now called 7g) using RL or direct preference
optimization.
o Output: A final policy mg~ that yields higher reward (i.e., better
alignment with preferences).
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Policy Gradient Concept (Mini-Refresher)

Policy: mg(a | s) is a probability distribution over actions a given state s.

Goal: Maximize expected return (or reward),

-
J(O) =E;r, [Z r(se, at)] .

t=0

where 7 is a trajectory (sp, ao, - .., ST, ar) generated by policy .

Policy Gradient Theorem:

VJ(0) = Ernr, [Vologmo(as | st) Qry(st, at)] -

In language modeling:
@ States s; can be the text context so far.

@ Actions a; are tokens or text chunks to generate.
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TRPO: Overview

Trust Region Policy Optimization (TRPQO) aims to:
@ Prevent overly large, destabilizing updates.

@ Constrain the change between 7g,, and 7,

Application: Stabilizes fine-tuning of LLMs.
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TRPO Basics

Objective:

max
0

e [We(a\s) At]
F@old(atlst)
Subject to:
&, [KL(ﬂeold('|5t) | ”9('|5t))} S0

& controls how "close” the new policy must remain.
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TRPO: Detailed Derivation

Lagrangian Formulation:

7T60(31_-|St)

L(0,)) = &, [%d (at\st)At] Y (Et[KL(ﬂgo,de)] - 5)

@ Solved using conjugate gradient methods.

@ A is the Lagrange multiplier enforcing the KL constraint.
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TRPO: Example Discussion

Example: Fine-tuning a summarization model.
@ State: The current summary and context.
@ Action: Next word/token generated.
@ Reward: Derived from a reward model assessing summary quality.
°

KL Constraint: Prevents the model from "forgetting” its fluency
learned during pretraining.
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TRPO: Pros and Cons

Pros:
@ Theoretical guarantees on improvement.
o Effective in safety-critical tasks.
Cons:
@ Requires second-order optimization (computationally intensive).

@ More complex to implement.
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Policy Gradients?

In Reinforcement Learning (RL), the agent aims to maximize
cumulative reward.

Policy gradients are a direct way to optimize the parameters of a
policy mg(a | s).

Avoid the complexities of value function approximation (although
hybrids exist).

o REINFORCE is the most straightforward policy gradient method.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 22/89



REINFORCE Algorithm (High-Level)

@ Also known as the Monte Carlo Policy Gradient.

o Key idea: update policy parameters 0 in the direction of better
returns.

@ Simple update rule:

A x ZVG log mo(a¢ | st) Gt
t

@ G; is the return following time t.
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Return and Trajectories

e For an episode 7 = (sp, a0, 11,51, - -+, ST—1,3T—1,T),

T—t—1
k
G = g Y o rt+k+1
k=0

e 7 € [0,1] is the discount factor.
@ REINFORCE uses full-episode returns to update parameters.
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Derivation of the Gradient

J(Q) - IETNW@[G(T)]
VJ(0) = Erry [G(7) Vo log 7o (7)]

o my(7) = Hth_ol mo(ar | st).

e By taking Vylogmy(7), we get the sum of logs over actions.
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Single-Step Example

e For a single-step environment (bandit), G(7) = r(a).

o Update:
AY < E[r(a)Vglogmg(a)].

@ This can be high variance if r(a) is noisy.
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Baselines and Variance Reduction

o REINFORCE often uses a baseline b(s) to reduce variance:

Af Z(Gt b(s¢)) Vg log ma(at | st).

o If b(s) is a good approximation of the value function V7 (s), variance
is greatly reduced.

@ Does not introduce bias if b(s) is state-dependent but not
action-dependent.
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Algorithmic Steps

@ Initialize policy parameters 6.
@ Repeat (for each episode):

o Generate an episode using my.
o For each time step t:
o Compute return G;.
o Update:
0+ 0+ a(G: — b(st))Velogma(ar | st).
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The Objective J(0)

J(0) = Err, [G(T)]

T-1
= (I] 7o(ac | st)P(se41 | se.2:)) G(7).
t=0

T

e Typically in discrete action spaces, my(a | s) is parameterized via a
softmax of logits.

@ In continuous action spaces, 7y could be Gaussian.
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Gradient Trick

T-1
Vod(0) =) <v9 I moa | st)> P(r)G(7).

T t=0
T-1 T-1
= Z <H mo(ar | 5t)> <Z Vg log ma(at | 5t)) G(7).
— \iZo t=0
T 1

’TN’TI'9

Vo log mg(a: | st)] .
t:O
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Incremental Updates

@ In practice, we sample a batch of episodes and approximate the
expectation.

@ Single-trajectory gradient estimate:

T

._\

Vo |Og779 at | 5t)
t:O

@ This is unbiased but can have high variance.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 31/89



Pros and Cons of REINFORCE

@ Conceptually simple and easy to implement.
@ Does not require value function approximation.

e Can be used in any differentiable policy setting (discrete or
continuous).

@ High variance updates.

@ Slower convergence compared to methods that use critics (e.g.,
Actor-Critic).

@ Full returns needed (episode-based), which can be expensive for long
horizons.

.
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RL for Language Models

@ In large language models (LLMs), the “environment” can be seen as
the text generation process.

@ Actions are tokens, states are partial sequences.

@ Rewards come from preference models, user feedback, or automated
metrics.

@ REINFORCE can directly optimize these rewards, but naive
application may be unstable.
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Typical RLHF (PPO)

@ Proximal Policy Optimization (PPO) is more common for RLHF.
@ Clipped updates reduce catastrophic changes to the language model.

@ Still a policy gradient approach, but with more stability than pure
REINFORCE.
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Direct Preference Optimization (DPO)

@ A new approach that “removes the RL" from RLHF by deriving a
closed-form solution for the updated policy.

@ Key idea: Reweight the pretrained policy distribution by
exp(RMy(x, y)/5).

@ Conceptually linked to policy gradient ideas—especially the
exponential family perspective.
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From REINFORCE to DPO

o REINFORCE perspective:
AfO x RVylogmg.

o If reward is RMg(x,y), and we have a KL penalty to the pretrained
model log pP'T, you can solve for 7* in closed form.

e DPO (and related methods) exploit this closed-form “Boltzmann”
distribution.
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Connection to Exponential Families

e REINFORCE with reward R(y) and KL to a base distribution leads to:
™ (y) o< p7 T (y) exp(5R(y)).

@ This is the same functional form as a Boltzmann distribution in
statistical physics.
@ DPO leverages this fact to skip iterative policy gradient loops.
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Practical Implications for LLMs

o Efficiency: DPO can be more direct, but still may require sampling to
estimate normalization constants.

@ Stability: REINFORCE alone can be unstable for large models, so
often a mix of ideas (KL control, baselines, etc.) is used.

o Interpretability: The Boltzmann form gives a clear interpretation of
how reward and prior combine.
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When to Use REINFORCE vs. DPO

o REINFORCE:

e Good for simple or small-scale tasks.
e Straightforward to implement, but may need variance reduction.

e DPO:

e More direct approach if you have a stable reward model.
e Avoids iterative RL, but normalization can be tricky in large
vocabularies.
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PPO Overview

Proximal Policy Optimization (PPO) [1]:
@ A trust-region style algorithm that avoids large destructive updates.

@ Motivation: Traditional policy gradient methods can produce large
policy steps, leading to training instability.
@ Solution: PPO clips the policy update to keep 7y close to the old

policy g,

In RLHF:
@ The reward model Ry(-) is learned from human preferences.

@ PPO updates the language model’'s parameters 6 to maximize reward,
subject to constraints.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 40/89



PPO Clipped Objective

Probability Ratio:
re(0) = _molae | st) .
T0oa (3t | St)

Clipped Surrogate Objective:

Lppo(6) = B, [min(rt(e)f\t, clip(re(6),1 — €,1+ ) At)] ,

where
o A, is an estimator of the advantage function,
@ ¢ is a small hyperparameter (e.g., 0.1 or 0.2).

Interpretation:

o If ri(0) goes outside (1 — ¢,1 + €), the objective stops encouraging
that deviation as strongly.

@ Prevents overly large policy shifts that could destabilize performance.
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Advantage Function & Estimation

Advantage Function:

A7r9(5t7 at) - Qﬂ'g(sta at) - Vﬂ'g(st)a
where
® Qr,(st,at) is the action-value function,
o V., (s¢) is the state-value function.
In practice, we often use GAE (Generalized Advantage Estimator) [2]:

AAt ~ Z 7)\ 5t+k7
k=0

where 0 = re + YV/(st41) — V(st).
In Language Tasks:

o A, helps measure how good a generated token/sequence is relative to
a baseline.

@ The reward can be partial (at each token) or only at the end of the
generated text.
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PPO in Practice for LLMs

@ Collect samples: Given prompts, the LLM generates text using the
current policy mg.
Evaluate with Reward Model: A separate network Ry assigns a
scalar reward r to the generated response.

(2]

© Compute Advantage: Estimate A; using the difference between the
reward and the baseline (e.g., value function).

o

Policy Update:
0 < 6 + aVylppo(0).

© Repeat: Iterate this process with updated 6.
Benefits of PPO:

o Relatively stable training due to clipping.

e Widely adopted in large-scale RLHF (e.g., ChatGPT).
Challenges:

@ Requires a well-trained reward model (potential noise or bias).

e Still computationally expensive (multiple passes, large batch sizes).
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PPO Example (Hypothetical)

Scenario: Summarization of a news article.
© Prompt / State (s): The article text.
@ Action (a): The next token (or chunk) in the summary.

© Reward (r): Higher if the summary is concise, accurate, and
well-structured (as judged by Ry).

@ Policy Update: PPO adjusts 6 to increase probability of
better-summarizing tokens.

lllustration of Clipping;:

mo( “the" | s¢)
g, (“the” | s¢)

re(0) =

If re(0) is too large, the gradient is clipped to prevent big updates.
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Strengths and Weaknesses of PPO

Strengths:
@ Robustness: Clipped objective prevents extreme policy updates.
o Ease of Use: Reasonably straightforward hyperparameters (clip
range, etc.).
@ Track Record: Proven in many RL tasks, widely used in LLM RLHF
contexts.

Weaknesses:

o Complexity: Requires training or maintaining a reward model +
value function.

o Computation-Heavy: Often large batch sizes and iterative updates.

@ Reward Model Bias: If the reward model is inaccurate, it can
mislead the policy updates.
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DPO Overview

Direct Preference Optimization (DPO):

@ A more recent technique that directly uses preference labels without
a traditional RL loop.

e Idea: For each pair of responses (y™,y ™) where y™ is preferred,
increase the likelihood of y* and decrease that of y—.

@ Often realized via pairwise comparisons and a logistic-like loss.
Advantage:

@ Fewer moving parts: No explicit reward or value function is needed.

@ Simple training objective: Similar to supervised preference learning.
Potential Limitations:

@ Less established for large-scale tasks than PPO-based methods.

@ Might not handle complex long-horizon tasks as effectively (ongoing
research).
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Formal DPO Objective

Pairwise Preference Setting:

D={(xy"y )}

where x is the prompt or context, and y* is the preferred output over y—.
Loss Function (Logistic):

Loro(0) == > log(o(Aalx.y".y7)).
(xyt,y")eD
where
No(x,y",y~) =logpo(y™ | x) —log pa(y~ | x),
and o is the logistic sigmoid.

Goal: Minimize Lppo(f) which maximizes the likelihood of the preferred
response.
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Interpretation of the DPO Loss

Term-by-term Explanation:

log pa(y™ | x): Log-likelihood of the preferred response.

log po(y~ | x): Log-likelihood of the non-preferred response.

DNg(x,yT,y7): If Ag is large positive, it means pg(y™ | x) is much
higher than pg(y~ | x).

a(Lg): Approaches 1 if y™ is strongly more likely than y~—;
approaches 0.5 if they are equally likely.

Loss Minimization:
—log(o(Ag)) is low when Ay > 0.

Hence, we push Ay to be positive and large, favoring y™ over y~.
Relates to Binary Classification:

@ Just as logistic regression separates classes, DPO separates
“preferred” vs. “non-preferred” responses.
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DPO Training Procedure

@ Collect Pairwise Preferences:

o For each prompt x, obtain a pair (y*,y~) where y* is chosen by
human raters over y~.

@ Compute Gradients:
Voloro(®) = Y Va(—log(a(Be(x,y*,y7))).
Coyty ™)

© Parameter Update:
0« 06— UVQ,CDP()(Q).

@ lterate: Repeat until convergence or a fixed number of epochs.
No Need for:
@ Value function or advantage estimation.

@ Trust-region or clipping (as in PPO).
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Example of DPO

Scenario: Chatbot Q&A.
e Prompt (x): “What are some good restaurants in Paris?”

o Candidate Answers:

y* = “Le Meurice is famous for fine dining. ..."

¥y~ = “Not sure. | like pizza.”

@ Humans prefer y™ over y~ (more informative, relevant).
DPO Step:

Do(x,yT,y7) = log pp(“Le Meurice ..." | x) — log ps(“Not sure ..."

@ DPO pushes log pg(y™ | x) higher, log pg(y~ | x) lower.
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Strengths and Weaknesses of DPO

Strengths:

o Simplicity: Direct pairwise optimization, no need for separate reward
or value networks.

o Efficiency: Fewer hyperparameters than RL-based methods (no
clipping range, advantage function, etc.).

o Interpretability: Closer to supervised learning on preferences.
Weaknesses:

o Limited Evidence at Scale: Fewer large-scale success stories
compared to PPO-based RLHF.

o Potential Myopia: Doesn't explicitly account for multi-step or
long-horizon dependencies (open question in research).

o Data Requirements: Needs sufficient pairwise preference data,
which can be expensive to collect.
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PPO vs. DPO — The Core Differences

Aspect

PPO

DPO

Core Idea

Training Infrastructure
Objective Type
Complexity

Parameter Updates
Stability

Use Cases

RL with reward model
Reward model + policy + value net
Clipped surrogate RL objective
Higher (advantage, value function, etc.)
Constrained by trust region
Well-studied, stable
ChatGPT, large-scale RLHF

Direct optimization of preferences
Just preference pairs + model
Logistic preference loss
Lower (no explicit value function)
Unconstrained preference gradient
Newer, fewer known pitfalls
Potentially simpler alignment tasks
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Practical Considerations

When to Use PPO:
@ You already have or plan to build a reward model.

@ You are comfortable with RL frameworks (value functions, advantage
estimation, etc.).

@ You want a proven method with a robust track record.
When to Use DPO:

@ You have high-quality pairwise preference data and want a simpler
pipeline.
@ You want to avoid some overhead of RL (training a value net,
computing advantage).
@ You have tasks where direct ranking is sufficient.
Hybrid Approaches?:

@ Potential to combine direct preference optimization with partial RL
steps.

@ Ongoing research on bridging the two approaches.
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Example Use Cases

PPO-based Alignments:

@ ChatGPT: Large-scale RLHF, iterative improvement via user
feedback.

o Content Moderation Systems: Reward model that heavily penalizes
disallowed content, PPO updates policy.

o Dialogue Agents: Where the reward is shaped by user satisfaction or
correctness signals.

DPO-based Alignments:
o Simple QA Systems: If you have pairs of good vs. bad answers.

e Summaries / Headlines: If you have pairs of “better summary” vs.
“worse summary.”

o Low-Resource Settings: Quick turn-around with preference pairs
from smaller user studies.
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Thoughts

@ PPO is a well-established RL method with strong stability, widely
used in RLHF.

e DPO is a direct preference-based approach that removes some RL
complexity but is newer and less tested at scale.

@ Both aim for aligned, human-preferred outputs in LLMs—core to
safe, helpful Al

Open Questions:
@ How to combine the best of both worlds (RL + direct preferences)?

@ How to design robust reward models that generalize across many
domains?

@ How to handle long-horizon interactions for chat or multi-step
reasoning?
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DeepSeek V3: Mixture of Experts (MoE)

@ Introduction to the MoE approach in DeepSeek Zero.
o Leverages expert sub-networks with a dynamic gating mechanism.
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What is Mixture of Experts (MoE)?

@ A neural network design where multiple specialized expert models are
combined.

@ A gating network determines which experts are activated per input.

@ Enables conditional computation: only a subset of experts are used
per example.
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High-Level Architecture Overview

@ DeepSeek V3 integrates a shared backbone with many expert
modules.
@ The gating network routes each input to the most relevant experts.

@ Final output is a weighted aggregation of the selected expert outputs.
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Key Components

@ Gating Network: Processes the input to compute routing
probabilities.

o Expert Networks: Sub-models that specialize in different aspects of
the data.

@ Their combined interaction allows for a large effective capacity.
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MoE Components

e For an input x, let E;(x) be the output of expert i.
@ The gating network produces weights gj(x) via a softmax:
exp(Wjx)

50 = S ep(Wim)

@ The overall model output is:

N
f(x) =) &ix) Ei(x)
i=1
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Sparse Gating Mechanism

@ In practice, only the top-k experts (e.g., k = 2) are activated per
input.
@ The gating function is modified to:

exp(Wix) ;
gi(x) = { Sieseo o@Wx) €5k
0, otherwise

@ Here, S(x) represents the indices of the top-k experts.
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Load Balancing and Regularization

@ To avoid over-reliance on a few experts, a load balancing loss is

added: )
'Cb lan =A v
alance Z (Z C:] N)

@ ¢; counts the number of times expert i is selected.

@ ) is a hyperparameter controlling the regularization strength.
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Expert Network Architecture

@ Each expert is typically a feed-forward or convolutional sub-network.
@ They may include:

o Dense layers with activation functions (e.g., ReLU).
o Residual connections for deeper architectures.

@ Experts are trained jointly with the gating network.
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Integration in DeepSeek Zero

@ DeepSeek Zero uses DeepSeek V3's MoE to improve scalability.
o Conditional computation allows a massive increase in capacity

without proportional cost.
@ Empirical results demonstrate enhanced performance on diverse tasks.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 64 /89



DeepSeek Zero: Overview

@ Consists solely of transformer decoder layers.
o Each layer integrates MoE modules to enhance model capacity.

@ The MoE allows dynamic routing to expert sub-networks within each
decoder layer.
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Decoder-Only Transformer Basics

@ Uses self-attention to capture contextual dependencies.

@ Computes hidden states via:
h() = DecoderlLayer(h(~1))

@ The final hidden state is used for next-token prediction.
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Integrating Mixture of Experts

@ MoE modules are interleaved within selected decoder layers.

@ For a given hidden state h, experts provide specialized
transformations.
@ A gating network determines the contribution of each expert.
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Gating Network Details

@ For each hidden state h, compute gating scores for N experts:

() = exp(w;" h)
S0 =S ()

@ These scores determine which experts to activate.

@ Typically, only the top-k experts are selected to reduce computation.
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Expert Module Processing

@ Each expert E; processes the hidden state:
Ei(h) = o (W, ; ReLU( W ;h))

@ Experts are typically simple feed-forward networks.

@ Their outputs are combined based on the gating scores.
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Sparse Activation and Aggregation

@ With top-k selection, the gating function becomes:

exp(w;" h)

gi(h) = EjeS(h) eXP(WjTh) ,
0, otherwise

i€ S(h)

@ The aggregated output for the MoE layer is:

f(hy= > gi(h)E(h)

ieS(h)
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Loss Functions and Regularization

@ The primary loss is typically a cross-entropy loss over next-token
prediction.

@ A load balancing loss is added to ensure even expert utilization:

2
1
Ebalance = A Z ( N)

_] 1CJ

@ Here, ¢; counts the number of times expert / is selected, and A is a
hyperparameter.
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Training and Inference Dynamics

@ Training is performed end-to-end using gradient descent (e.g., Adam
optimizer):
my
o N
@ During inference, only the selected experts are computed, enhancing
efficiency.

9t+1 =0 —

@ This conditional computation leads to significant computational
savings.
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DeepSeek-R1 Overview

@ Objective: Enhance reasoning capabilities of large language models
(LLMs) using reinforcement learning (RL).

e Models Introduced:
o DeepSeek-R1-Zero: Trained purely with RL (no supervised
fine-tuning at the start).
@ Develops advanced reasoning behaviors (e.g., self-verification, long
chain-of-thought).
o Faces issues like language mixing and poor readability.
o DeepSeek-R1: Improves on R1-Zero by incorporating a small set of
cold-start data and multi-stage training.
o Achieves performance comparable to state-of-the-art models (e.g.,
OpenAl-ol series).
@ Produces more coherent and human-friendly outputs.
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Group Relative Policy Optimization

e Traditional policy gradient methods (e.g. PPO) rely on a large critic
network to estimate the value function.
e GRPO (Group Relative Policy Optimization):

e Avoids maintaining a large critic model.

o Estimates advantage within a group of sampled outputs.

o Reduces computational overhead, making large-scale RL more
tractable.

o DeepSeek Context:

o Large Language Models (LLMs) demand huge compute and memory.
o GRPO serves as a more efficient RL approach to improve reasoning in
LLMs.

Pustejovsky (CS115B) LLM Policy Optimization April 22, 2025 74 /89



GRPO: Policy Update Objective

Core Objective Function:

Jarpo(0) = E[q ~ P(Q), {0}y ~ mo,4(0 | )] [ L8, (min(ri(6) - A, clip(r(0),1— €, 1+€) - A7)

—B Dk (7o |l Wref))]

g: Query/prompt from distribution P(Q).

{oi}: A group of outputs sampled under the old policy 7y

(0) = mo(0i | q)
7T9old(oi | q)

clip(-,1 — €,1 4 €): Constrains how far updates can deviate from old

policy.

B: Coefficient for KL penalty to a reference policy myef.

old *

. Probability ratio.
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Group-Based Advantage: A;

@ Rather than using a learned value function, GRPO relies on:

Ai _ Fenv,i — M
o
where:
® reny,i IS the environment reward (or multi-part reward) for the i-th
output o;.

o 1 = mean({renv, J-Gzl) is the average reward within the group.
e 0= std({renv,j}le) is the standard deviation of rewards within the
group.
o Intuition:
e Compare each sample’s reward to the average reward of the same
mini-batch group.
o No need for a separate critic model to estimate expected returns.
o Benefit:

o Reduces memory footprint and training complexity.
o Large-scale RL becomes more feasible for LLMs (DeepSeek).
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Applying GRPO to LLMs (DeepSeek Example)

o LLM Setup:

o A base language model mg_,.
o We collect multiple outputs for each prompt q.

@ Group Sampling;:
@ For each prompt g, sample a group {o1,...,06}.
@ Evaluate each output o; via a reward function:

Fenv,i = Facc + Format + - - -

(e.g., math correctness, chain-of-thought format, language
consistency).

o Update Step:
0 « 6 —nVydarro(0)

o Uses the clip(-) mechanism to bound large deviations in 7.

o Adds a KL term to keep 7y close to a reference policy (often g,
baseline).
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Multi-Part Rewards in DeepSeek

Fenv,i = raccuracy(oi) + rformat(oi) + rlang(oi) + ...

@ Accuracy Reward: For math or coding tasks, check correctness
(e.g., verifying final numeric answer).

@ Format Reward: Enforce chain-of-thought or designated tags
(“<think>, <answer>").

o Language Consistency Reward: Penalize code-switching or mixing
of multiple languages when undesired.

o Optional: Additional sub-rewards for style, helpfulness, alignment,
etc.

Group Normalization

Reward signals are normalized within each sampled group, ensuring high or
low rewards are relative to other group members.

= = = = =
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Why GRPO is Attractive for DeepSeek

@ Reduced Critic Complexity:
o Typical PPO includes a critic as large as the policy (huge overhead for
10B+ parameter LLMs).
e GRPO avoids training/maintaining a large value network.
o Stabilized Policy Updates:
o Clip ratio approach (like PPO) prevents overly large gradient updates.
e KL penalty ensures the updated policy remains close to a reference,
mitigating collapse.
@ Scalable to LLMs:
e Group advantage estimation leverages mini-batches of rollouts at scale.
o Feasible to run large-scale RL on reasoning tasks (math/coding).
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Potential Limitations

Group-Dependent Signal:
e Advantage depends on the distribution of rewards within a group.
e Highly variable groups could destabilize updates.

o Reward Engineering;:

o Multiple sub-rewards may cause reward hacking if not carefully
balanced.

Exploration vs. Exploitation:
o With fewer guided signals (compared to a learned critic), exploration
might be riskier in early training.
Sensitivity to Prompt/Task Distribution:

o If the training set does not reflect real usage, the learned policy can
overfit to specific reward structures.
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Discussion Points

@ Comparing GRPO vs. PPO:
e When might a learned value function still be advantageous?
e Does group-based advantage scaling degrade with very large group
sizes?
@ Reward Curves and Annealing:
e Should the KL penalty 8 change over time to allow more exploration or
exploitation?
e How to best schedule e-clipping for policy ratio?
© Alignment with Human Preferences:

o Incorporating user feedback in the RL loop (helpfulness, harmlessness).
e Balancing correctness and alignment with minimal label overhead.
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Methodology and Pipeline

@ Reinforcement Learning Approach:

e Utilizes Group Relative Policy Optimization (GRPO) to avoid a
heavy critic model.
e Employs a rule-based reward system:
o Accuracy Rewards: Verify correct answers (e.g., math problems, code
outputs).
o Format Rewards: Ensure outputs follow a designated chain-of-thought
(CoT) structure.
o Self-Evolution:

e The model naturally extends its CoT length and rethinks its approach
(“aha moments").
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Cold Start & Multi-Stage Training (DeepSeek-R1)

o Cold Start: Fine-tune the base model with a curated set of long CoT
examples.
o Multi-Stage Pipeline:
e Stage 1: Initial RL training on the cold-start fine-tuned model.
o Stage 2: Use rejection sampling to generate additional supervised
fine-tuning (SFT) data.
o Stage 3: A final RL stage refines the model with broader prompts and
human-friendly rewards.
@ Outcome: Improved readability, language consistency, and overall
reasoning performance.
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Distillation to Smaller Models

@ Reasoning capabilities learned by DeepSeek-R1 are distilled into
smaller models (1.5B to 70B parameters).

o Distillation transfers the advanced reasoning skills efficiently.

@ Smaller distilled models sometimes outperform counterparts trained
solely with RL.
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Experimental Evaluation

o Benchmarks:

o Mathematics: AIME 2024, MATH-500, CNMO.
o Coding: Codeforces, LiveCodeBench.
e Knowledge and Long-Context: MMLU, SimpleQA, FRAMES.

@ Metrics: Pass@1 scores, Elo ratings, accuracy percentages.
o Results:

o DeepSeek-R1 achieves performance comparable to OpenAl-ol.
o Significant improvements over earlier models (e.g., DeepSeek-V3).
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Discussion and Future Directions

o RL vs. Distillation:
e RL directly improves reasoning but can be computationally expensive.
o Distillation is an economical alternative for deploying reasoning in
smaller models.
o Challenges:
e Issues such as language mixing, sensitivity to prompt formulations, and
limited performance in non-reasoning domains.
o Future Research:

o Enhancing multi-turn dialogue, structured outputs (e.g., JSON), and
long chain-of-thought strategies.
o Addressing scalability and efficiency in large-scale RL.
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Talking Points

o Reinforcement Learning in LLMs:

e How does RL drive advanced reasoning capabilities in LLMs?
o Benefits of GRPO over traditional actor-critic methods.

Supervised Fine-Tuning vs. Pure RL:

o Trade-offs between starting with pure RL (DeepSeek-R1-Zero) versus
using cold-start data.

o Reward Engineering:

o Discussion on rule-based rewards and the potential of neural reward
models.

Emergent Behaviors:

e Importance of extended chain-of-thought processes and the emergence
of “aha moments.”

Distillation Techniques:

e How can reasoning capabilities be effectively transferred to smaller
models?
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Discussion Questions

@ How does pure RL compare with a cold-start and multi-stage training
pipeline in terms of performance and learning efficiency?

@ What challenges arise when using rule-based reward models, and how
might neural reward models mitigate these issues?

© In what ways do extended chain-of-thought processes and “aha
moments’ enhance a model’s reasoning abilities?

@ What are the benefits and limitations of distilling large teacher models
into smaller student models, especially under resource constraints?

© How well do current benchmarks capture the depth of reasoning, and
what improvements could be made in future evaluations?

O Considering the computational demands of large-scale RL, what
strategies could improve the scalability and practicality of these
models?
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