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Outline and Goals for Today

© Motivation and Background

© The Mathematics of Sinusoidal Encoding
© Step-by-Step Example: d_model = 4

@ Integration with Transformer Models

© Technical Details

© Further Topics

Lecture Objectives
Understand why self-attention lacks order awareness.

Learn the details behind sinusoidal positional encoding.
Derive the mathematical formulas.
Work through detailed numerical examples.

Compare fixed (sinusoidal) vs learned approaches.

Discuss implications for transformer models.
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The Problem of Position in Self-Attention

o Self-attention models (e.g., Transformers) process all tokens in
parallel.

@ This design lacks a notion of sequential order because it treats
inputs as a set.

e Language is sequential: The order of words is crucial for syntax and
semantics.

Compare the meaning of:
"The cat sat on the mat" wvs. "The mat sat on the cat"
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Implicit Positional Information in Other Architectures

e Recurrent Neural Networks (RNNs): Process tokens sequentially,
inherently preserving order.

e Convolutional Neural Networks (CNNs): Use localized filters that
capture spatial (or temporal) proximity.

o Transformers: Lack these inherent mechanisms, thus requiring
explicit injection of positional data.
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Introducing Positional Encoding

Definition

Positional encoding adds a vector to each token embedding to convey its
position in the sequence.

@ It must have the same dimensionality as the token embeddings.

@ It encodes absolute or relative positional information.
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Why a Fixed, Sinusoidal Approach?

@ Deterministic: No additional parameters; the encoding is computed
by a fixed function.

@ Generalization: Can be extrapolated to positions longer than seen
during training.

@ Variety: Different frequencies capture both fine-grained and
coarse-grained positions.
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Sine and Cosine: Mathematical Properties

e Periodicity: sin(x) and cos(x) are periodic, providing a repeated, yet
unique pattern.

o Differentiability: Smooth, continuous functions with well-defined
derivatives.

o Frequency Variation: Adjusting the input scaling changes the
frequency of oscillation.

These properties allow us to generate a unique signature for each position.
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The Sinusoidal Positional Encoding Formula

For each position pos and model dimension dmedel, We define:
PE(pos,2i) = sin(Lszl.

10000 9model

pos

PE(pos,2i+ 1) = cos( o
10000 9mode

where:
@ pos is the token's position.

@ / indexes over the dimensions.
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Dissecting the Denominator: 10000ﬁidel

@ This term ensures each dimension oscillates at a different frequency.
@ When /i = 0: .
10000 dmodet =1

so the function uses its natural frequency.
e For higher i, the wavelength increases (frequency decreases).

@ This diversity in frequencies allows capturing both short-range and
long-range dependencies.
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Frequency Perspective of Positional Encoding

@ Each dimension 2/ or 2/ + 1 represents a sine or cosine function with
a specific frequency.

e Lower dimensions capture high-frequency variations (fine details).

@ Higher dimensions capture low-frequency variations (global structure).

This multiscale representation is key to encoding varied positional
information.
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Differentiability and Gradient Flow

@ Sine and cosine functions are smooth and differentiable, which aids
gradient-based learning.

@ While the positional encodings themselves are fixed, their smooth
variation helps the network learn by providing subtle differences
between nearby positions.
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Role of Even and Odd Dimensions

e Even-indexed dimensions (e.g., 0,2,4,...) use the sine function.

e Odd-indexed dimensions (e.g., 1,3,5,...) use the cosine function.

This separation provides two distinct phases of the same underlying wave,
enriching the positional signature.
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Recap: The Positional Encoding Equations

PE(pos, 2i) = sin< pos
10000 9mode!
PE(pos,2i+ 1) = cos( pos o
10000 dmodel

@ pos: token position (0-indexed or 1-indexed, depending on
implementation).

@ dmodel: dimensionality of the embeddings.

@ /: the index over the half of the dimensions.
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Example Setup: dmogel = 4

@ We choose a small embedding size, dmnodel = 4, for clarity.

@ We will compute the positional encoding for several positions:

pos =0, pos =1, and pos = 3.
@ Recall: For i =0,1 (since 2/ and 2/ + 1 will cover 0 to 3).
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Calculating PE at pos =0

@ Fori=0:

: 0 :
PE(0,0) = sm(m) =sin(0) =0

PE(0,1) = =cos(0) =1

0
COS( 100000/4)
@ Fori=1:

PE(0,2):Si“<m00002/4) N 'n<180> ’

PE(0,3) = cos( =cos(0) =1

1000077
100002/4

Thus, PE(0) = [0, 1, 0, 1].
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Calculating PE at pos = 1 — Even Dimensions

@ For i =0:
1

PE(].7 O) =sin (W

) = sin(1)

Approximating: sin(1) ~ 0.8415.
@ Fori=1:

PE(1,2) = Si”(mooloz/4> - Sin(ﬁ)

For small angle, sin(0.01) ~ 0.01.
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Calculating PE at pos = 1 — Odd Dimensions

e Fori=0:
PE(1,1) = cos(1)
Approximating: cos(1) ~ 0.5403.
@ Fori=1:
PE(1,3) = cos<i> = cos(0.01)
100
For small angles, cos(0.01) ~ 0.99995.

Thus, PE(1) ~ [0.8415, 0.5403, 0.01, 0.99995].
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Calculating PE at pos = 3: Even Dimensions

@ Fori=0:
PE(3,0) =sin(3) (since 100004 = 1)
Approximate: sin(3) ~ 0.1411.

e Fori=1:

PE(3,2) = sin(%) = sin(0.03)

Approximate: sin(0.03) =~ 0.03.
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Calculating PE at pos = 3: Odd Dimensions

e Fori=0:
PE(3,1) = cos(3)
Approximate: cos(3) ~ —0.9899.
e Fori=1:

3
PE(3,3) = cos<m> = cos(0.03)
Approximate: cos(0.03) ~ 0.99955.

So, PE(3) ~ [0.1411, —0.9899, 0.03, 0.99955].
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Step-by-Step: Recap for pos = 3

For dmodel = 4:
@ Dimension 0 :

PE(3,0) = sin(%) — sin(3) ~ 0.1411.

@ Dimension 1:
PE(3,1) = cos(3) ~ —0.9899.

© Dimension 2 :

3
PE(3,2) = sin(m> — sin(0.03) & 0.03.

© Dimension 3:

PE(3,3) = cos(0.03) ~ 0.99955.
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Graphical lllustration of Sinusoidal Curves

e Plotting sin(x) and cos(x) shows smooth, periodic oscillations.

o Different scaling factors (e.g., x vs. x/100) yield curves with different
wavelengths.

[Insert Plot: Multiple sine/cosine curves demonstrating frequency changes|
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Frequency and Distinct Positional Signatures

@ Each dimension’s scaling factor determines its frequency.

e High-frequency components (lower /) capture rapid positional
changes.

o Low-frequency components (higher i) capture broad, global position
information.

Implication: The combination across dimensions results in a unique,
multi-scale encoding.
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Advantages of Sinusoidal Positional Encoding

Parameter-free: No extra learnable parameters are introduced.

Extrapolation: Functions generalize to positions beyond training.

Smooth Variation: Nearby positions yield similar encodings—useful
for learning relative distances.

@ Dual Functions: Use of sine and cosine provides complementary
phase information.
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Integrating Positional Encoding with Token Embeddings

@ Token embeddings: Represent the meaning of the token.
@ Positional encodings: Provide information about the token's position.

@ Combined Representation:

Input Representation = Token Embedding + Positional Encoding

This addition preserves the embedding dimension and introduces
order-sensitive information.

Pustejovsky (Brandeis) Positional Encoding April 8, 2025 24 /38



Mathematics of Combined Embeddings

Let:
E; € R%ode  pe the embedding of token at position ¢,

and
P, € R9model  be the positional encoding for position t.

Then the input to the Transformer is:
Xt — Et + Pt"

This summation ensures both semantic and positional information are
available to the self-attention mechanism.
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Influence on Self-Attention Computations

o Self-attention computes dot products between queries and keys.

@ With positional encoding, these dot products include contributions
from both content and position.

@ This helps the model differentiate otherwise similar tokens that occur
at different positions.
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Backpropagation Through Positional Encodings

@ As the sinusoidal encoding is fixed (not learned), no gradients are
computed for these encodings.

@ The gradients flow only through the token embeddings and
subsequent layers.

e This simplicity avoids potential issues with overfitting on position.
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Fixed vs. Learned Positional Embeddings

e Fixed (Sinusoidal):
o No additional parameters.
o Extrapolates naturally to longer sequences.

@ Learned:

o Parameters are updated during training.
e May not extrapolate well beyond training positions.

Trade-Off: Fixed encodings are simple and robust, while learned
encodings offer flexibility at the cost of increased parameterization.
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Why the —2=5— Term?
10000 Imodel

@ The power term d2i ensures the wavelengths form a geometric

model
progression.

@ This progression guarantees that each dimension represents a different
frequency scale.

@ Using 10000 as the base is an empirical choice, large enough to cover
a wide range of positions.
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Differentiation of the Sine Component

Consider the derivative with respect to pos for the even-dimension:

d . pos 1 pos
(P o cos( P ),
pos 10000 %model 10000 mode 10000 %model

@ This shows how a change in position affects the encoding.

@ Similar derivation holds for the cosine components.

Pustejovsky (Brandeis) Positional Encoding April 8, 2025

30/38



Understanding Wavelength and Phase

2i
@ Wavelength: Determined by 10000 dmodel ; larger for higher
dimensions.

e Phase: Sine and cosine functions differ by a phase shift (7/2),
providing complementary information.

@ Together, they allow the model to discern fine-grained and coarse
positional differences.
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Extended Example: dyodel = 8 for pos = 3

@ Now consider a model with dyodel = 8.

@ For each i =0,1,2,3, compute:

PE(3,2i) = sin ( 2,)
10000%

PE(3,2i + 1) = cos <2,>
10000

@ The first pair (i = 0) is identical to our previous computations; higher
i yield different scaling.
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Computational Efficiency Considerations

@ The fixed nature of sinusoidal encodings requires minimal additional
computation.

@ Memory overhead is small since the encoding can be computed on the
fly.

o Efficient for both training and inference, especially when extrapolating
to longer sequences.
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Influence on Attention Weights

@ The attention mechanism computes scores as:

T

: QK
Attention(Q, K, V) = softmax( > V.
Vdk

@ With combined embeddings, the dot products incorporate position.

@ This can modulate the attention scores based on the relative positions
of tokens.
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Empirical Benefits in Transformer Models

@ Studies show that positional encoding improves performance on tasks
like translation, summarization, and language modeling.

@ The sinusoidal method is especially beneficial in scenarios where
sequence lengths vary widely.

@ Research continues to explore alternatives (e.g., relative positional
encoding) to further enhance performance.
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Relative vs Absolute Positional Encodings

@ Absolute Encodings: Fixed positions provided by sinusoidal or
learned vectors.

o Relative Encodings: Focus on the distance between tokens.

@ Relative encodings can offer better performance for some tasks by
directly modeling inter-token distance.
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Future Directions and Open Questions

e How do modifications in the base (10000) or the exponent affect
learning?

@ Can hybrid approaches combining fixed and learned components yield
improvements?

@ What tasks benefit the most from relative positional encodings versus
absolute ones?
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Summary and Recap

@ Problem: Self-attention lacks inherent positional information.
@ Solution: Add sinusoidal positional encodings using:
PE(pos, 2i) = sin< pos — |
10000 9model
PE(pos,2i+ 1) = cos(LSZ,
10000 9mode!

Example: Detailed computations for dmnodel = 4 and dmodel = 8.

Integration: Combined with token embeddings to inform the
attention mechanism.
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