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Verb Phrases
 English VPs consist of a head verb along 

with 0 or more following constituents 
which we’ll call arguments.
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Subcategorization

 Even though there are many valid VP 
rules in English, not all verbs are allowed 
to participate in all those VP rules.

 We can subcategorize the verbs in a 
language according to the sets of VP 
rules that they participate in.

 This is just an elaboration on the 
traditional notion of 
transitive/intransitive.

 Modern grammars have many such 
classes
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Subcategorization

 Sneeze:  John sneezed

 Find:  Please find [a flight to NY]NP

 Give: Give [me]NP[a cheaper fare]NP

 Help: Can you help [me]NP[with a 
flight]PP

 Prefer: I prefer [to leave earlier]TO-VP

 Told: I was told [United has a flight]S

 …



Programming Analogy

 It may help to view things this way

◦ Verbs are functions or methods

◦ They participate in specify the number, 
position, and type of the arguments they 
take...

 That is, just like the formal parameters to a 
method. 
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Subcategorization

 *John sneezed the book

 *I prefer United has a flight

 *Give with a flight

 As with agreement phenomena, we 
need a way to formally express these 
facts



12/28/2024 7

Why?

 Right now, the various rules for VPs 
overgenerate.

◦ They permit the presence of strings containing 
verbs and arguments that don’t go together

◦ For example

◦ VP -> V NP therefore

Sneezed the book is a VP since “sneeze” is a 
verb and “the book” is a valid NP
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Possible CFG Solution
 Possible solution for 

agreement.

 Can use the same 
trick for all the 
verb/VP classes.

 SgS -> SgNP SgVP

 PlS -> PlNp PlVP

 SgNP -> SgDet 
SgNom

 PlNP -> PlDet PlNom

 PlVP -> PlV NP

 SgVP ->SgV Np

 …
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CFG Solution for Agreement

 It works and stays within the power of 
CFGs

◦ But it is a fairly ugly one

 And it doesn’t scale all that well 
because of the interaction among the 
various constraints explodes the 
number of rules in our grammar.



12/28/2024 10

Summary

 CFGs appear to be just about what we need 
to account for a lot of basic syntactic 
structure in English.

 But there are problems
◦ That can be dealt with adequately, although not 

elegantly, by staying within the CFG framework.

 There are simpler, more elegant, solutions 
that take us out of the CFG framework 
(beyond its formal power)
◦ LFG, HPSG, Construction grammar, XTAG, etc.
◦ Chapter 15 explores one approach (feature 

unification) in more detail 
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Treebanks

 Treebanks are corpora in which each 
sentence has been paired with a parse 
structure (presumably the correct one).

 These are generally created 
1. By first parsing the collection with an 

automatic parser

2. And then having human annotators hand 
correct each parse as necessary.

 This generally requires detailed annotation 
guidelines that provide a POS tagset, a 
grammar, and instructions for how to deal 
with particular grammatical constructions.



Parens and Trees
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(S (NP (Pro I))

(VP (Verb prefer)

(NP (Det a)

(Nom (Nom (Noun morning))

(Noun flight)))))
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Penn Treebank
 Penn TreeBank is a widely used treebank.

Most well known part is 
the Wall Street Journal 
section of the Penn 
TreeBank.

▪1 M words from the 
1987-1989 Wall 
Street Journal.
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Treebank Grammars

 Treebanks implicitly define a grammar 
for the language covered in the 
treebank.

 Simply take the local rules that make up 
the sub-trees in all the trees in the 
collection and you have a grammar
◦ The WSJ section gives us about 12k rules if 

you do this

 Not complete, but if you have decent 
size corpus, you will have a grammar 
with decent coverage.
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Treebank Grammars

 Such grammars tend to be very flat due to 
the fact that they tend to avoid recursion.

◦ To ease annotator’s burden, among things

 For example, the Penn Treebank has 
~4500 different rules for VPs. Among 
them...
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Treebank Uses

 Treebanks (and head-finding) are 
particularly critical to the development 
of statistical parsers
◦ Chapter 14
 We will get there

 Also valuable to Corpus Linguistics
◦ Investigating the empirical details of 

various constructions in a given language
 How often do people use various constructions 

and in what contexts...

 Do people ever say X ...



12/28/2024 17

Head Finding

 Finding heads in treebank trees is a 
task that arises frequently in many 
applications.

◦ As we’ll see it is particularly important in 
statistical parsing

 We can visualize this task by 
annotating the nodes of a parse tree 
with the heads of each corresponding 
node.
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Lexically Decorated Tree
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Head Finding

 Given a tree, the standard way to do 
head finding is to use a simple set of 
tree traversal rules specific to each 
non-terminal in the grammar. 
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Noun Phrases
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Treebank Uses

 Treebanks (and head-finding) are 
particularly critical to the development 
of statistical parsers

◦ Chapter 14

 Also valuable to Corpus Linguistics
◦ Investigating the empirical details of 

various constructions in a given language
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Dependency Grammars

 In CFG-style phrase-structure 
grammars the main focus is on 
constituents and ordering.

 But it turns out you can get a lot done 
with just labeled relations among the 
words in an utterance.

 In a dependency grammar framework, 
a parse is a tree where 
◦ The nodes stand for the words in an utterance
◦ The links between the words represent 

dependency relations between pairs of words.
 Relations may be typed (labeled), or not.
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Dependency Relations
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Dependency Parse
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Dependency Parsing
 The dependency approach has a number of 

advantages over full phrase-structure 
parsing.
◦ It deals well with free word order languages 

where the constituent structure is quite fluid

◦ Parsing is much faster than with CFG-based 
parsers

◦ Dependency structure often captures the 
syntactic relations needed by later applications
 CFG-based approaches often extract this same 

information from trees anyway
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Summary

 Context-free grammars can be used to 
model various facts about the syntax of a 
language.

 When paired with parsers, such grammars 
consititute a critical component in many 
applications.

 Constituency is a key phenomena easily 
captured with CFG rules.
◦ But agreement and subcategorization do pose 

significant problems

 Treebanks pair sentences in corpus with 
their corresponding trees.



1. Phrase structure

 Phrase structure trees organize 
sentences into constituents or 
brackets.

 Each constituent gets a label.

 The constituents are nested in 
a tree form.

 Linguists can and do argue 
about the details.

 Lots of ambiguity …



Constituency Tests

• How do we know what nodes go in the tree?

• Classic constituency tests:
– Substitution by proform

– Question answers

– Semantic grounds
• Coherence

• Reference

• Idioms

– Dislocation

– Conjunction

• Cross-linguistic arguments



Conflicting Tests

Constituency isn’t always clear.

 Phonological Reduction:
◦ I will go → I’ll go

◦ I want to go → I wanna go

◦ a le centre → au centre

 Coordination
◦ He went to and came from the store.



 Write symbolic or logical rules:

 Use deduction systems to prove parses from words
◦ Minimal grammar on “Fed” sentence:  36 parses
◦ Simple, 10-rule grammar:  592 parses
◦ Real-size grammar:  many millions of parses
◦ With hand-built grammar, ~30% of sentences have no parse

 This scales very badly.
◦ Hard to produce enough rules for every variation of language (coverage)
◦ Many, many parses for each valid sentence (disambiguation)

Classical NLP:  Parsing



Ambiguity examples



The bad effects of V/N ambiguities



Ambiguities:  PP Attachment



Attachments

 I cleaned the dishes from dinner.

 I cleaned the dishes with detergent.

 I cleaned the dishes in my pajamas.

 I cleaned the dishes in the sink.



Syntactic Ambiguities 1
 Prepositional Phrases

They cooked the beans in the pot on the stove with handles.

 Particle vs. Preposition
The puppy tore up the staircase.

 Complement Structure
The tourists objected to the guide that they couldn’t hear.

She knows you like the back of her hand.

 Gerund vs. Participial Adjective
Visiting relatives can be boring.

Changing schedules frequently confused passengers.



Syntactic Ambiguities 2

• Modifier scope within NPs
impractical design requirements

plastic cup holder

• Multiple gap constructions
The chicken is ready to eat.

The contractors are rich enough to sue.

• Coordination scope
Small rats and mice can squeeze into holes or cracks in 

the wall.



Classical NLP Parsing:

The problem and its solution
• Very constrained grammars attempt to limit 

unlikely/weird parses for sentences
– But the attempt makes the grammars not robust: many 

sentences have no parse

• A less constrained grammar can parse more 
sentences
– But simple sentences end up with ever more parses

• Solution: We need mechanisms that allow us to find 
the most likely parse(s)
– Statistical parsing lets us work with very loose grammars 

that admit millions of parses for sentences but to still 
quickly find the best parse(s)



Polynomial-time Parsing with 
Context Free Grammars



Parsing

Computational task:

Given a set of grammar rules and a sentence, find 
a valid parse of the sentence (efficiently)

Naively, you could try all possible trees until you 
get to a parse tree that conforms to the 
grammar rules, that has “S” at the root, and 
that has the right words at the leaves.  

But that takes exponential time in the number of words.

39



Aspects of parsing
 Running a grammar backwards to find possible structures for a 

sentence

 Parsing can be viewed as a search problem

 Parsing is a hidden data problem

 For the moment, we want to examine all structures for a string of 
words

 We can do this bottom-up or top-down

◦ This distinction is independent of depth-first or breadth-first 
search – we can do either both ways

◦ We search by building a search tree which his distinct from the 
parse tree



Human parsing

 Humans often do ambiguity maintenance
◦ Have the police … eaten their supper?

◦ come in and look around.

◦ taken out and shot.

 But humans also commit early and are 
“garden pathed”:
◦ The man who hunts ducks out on weekends.

◦ The cotton shirts are made from grows in 
Mississippi.

◦ The horse raced past the barn fell.



A phrase structure grammar

• S → NP  VP N → cats

• VP →V  NP N → claws

• VP →V  NP  PP N → people

• NP → NP  PP N → scratch

• NP → N V → scratch

• NP → e P → with

• NP → N  N

• PP → P  NP

• By convention, S is the start symbol, but in the PTB, 
we have an extra node at the top (ROOT, TOP)



Phrase structure grammars = 

context-free grammars
• G = (T, N, S, R)

–T is set of terminals

–N is set of nonterminals

• For NLP, we usually distinguish out a set P  N of 

preterminals, which always rewrite as terminals

• S is the start symbol (one of the nonterminals)

• R is rules/productions of the form X → , where X 

is a nonterminal and  is a sequence of terminals 

and nonterminals (possibly an empty sequence)

• A grammar G generates a language L.



Probabilistic or stochastic context-

free grammars (PCFGs)
• G = (T, N, S, R, P)

– T is set of terminals

– N is set of nonterminals
• For NLP, we usually distinguish out a set P  N of 

preterminals, which always rewrite as terminals

• S is the start symbol (one of the nonterminals)

• R is rules/productions of the form X → , where X is a 
nonterminal and  is a sequence of terminals and 
nonterminals (possibly an empty sequence)

• P(R) gives the probability of each rule.

• A grammar G generates a language model L.

 

X  N, P(X → ) =1
X→ R





Soundness and completeness

 A parser is sound if every parse it returns is valid/correct

 A parser terminates if it is guaranteed to not go off into 
an infinite loop

 A parser is complete if for any given grammar and 
sentence, it is sound, produces every valid parse for 
that sentence, and terminates

 (For many purposes, we settle for sound but incomplete 
parsers: e.g., probabilistic parsers that return a k-best 
list.)



Top-down parsing
• Top-down parsing is goal directed

• A top-down parser starts with a list of constituents 
to be built. The top-down parser rewrites the goals in 
the goal list by matching one against the LHS of the 
grammar rules, and expanding it with the RHS, 
attempting to match the sentence to be derived.

• If a goal can be rewritten in several ways, then there 
is a choice of which rule to apply (search problem)

• Can use depth-first or breadth-first search, and goal 
ordering.



Top-down parsing



Problems with top-down parsing
• Left recursive rules

• A top-down parser will do badly if there are many different rules for 
the same LHS.  Consider if there are 600 rules for S, 599 of which start 
with NP, but one of which starts with V, and the sentence starts with V.

• Useless work: expands things that are possible top-down but not there

• Top-down parsers do well if there is useful grammar-driven control: 
search is directed by the grammar

• Top-down is hopeless for rewriting parts of speech (preterminals) with 
words (terminals).  In practice that is always done bottom-up as lexical 
lookup.

• Repeated work: anywhere there is common substructure



Repeated work…



Bottom-up parsing
• Bottom-up parsing is data directed

• The initial goal list of a bottom-up parser is the string to be parsed. If a 
sequence in the goal list matches the RHS of a rule, then this sequence 
may be replaced by the LHS of the rule.

• Parsing is finished when the goal list contains just the start category.

• If the RHS of several rules match the goal list, then there is a choice of 
which rule to apply (search problem)

• Can use depth-first or breadth-first search, and goal ordering.

• The standard presentation is as shift-reduce parsing.



Problems with bottom-up parsing

• Unable to deal with empty categories: termination 
problem, unless rewriting empties as constituents is 
somehow restricted (but then it's generally 
incomplete)

• Useless work: locally possible, but globally impossible.

• Inefficient when there is great lexical ambiguity 
(grammar-driven control might help here)

• Conversely, it is data-directed: it attempts to parse 
the words that are there.

• Repeated work: anywhere there is common 
substructure



Chomsky Normal Form

 All rules are of the form X → Y Z or X → w.
 A transformation to this form doesn’t change the 

weak generative capacity of CFGs.
◦ With some extra book-keeping in symbol names, you 

can even reconstruct the same trees with a detransform
◦ Unaries/empties are removed recursively
◦ N-ary rules introduce new nonterminals:

 VP → V NP PP  becomes  VP → V @VP-V  and  @VP-V → NP PP

 In practice it’s a pain
◦ Reconstructing n-aries is easy
◦ Reconstructing unaries can be trickier

 But it makes parsing easier/more efficient
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For Now
 Assume…

◦ You have all the words already in some buffer

◦ The input is not POS tagged prior to parsing

◦ We won’t worry about morphological analysis

◦ All the words are known

◦ These are all problematic in various ways, and 
would have to be addressed in real 
applications.
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Top-Down Search

 Since we’re trying to find trees rooted 
with an S (Sentences), why not start 
with the rules that give us an S.

 Then we can work our way down from 
there to the words.
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Top Down Space



12/28/2024 56

Bottom-Up Parsing

 Of course, we also want trees that 
cover the input words. So we might 
also start with trees that link up with 
the words in the right way.

 Then work your way up from there to 
larger and larger trees.
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Bottom-Up Search
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Bottom-Up Search
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Bottom-Up Search
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Bottom-Up Search 
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Bottom-Up Search
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Top-Down and Bottom-Up

 Top-down
◦ Only searches for trees that can be 

answers (i.e. S’s)

◦ But also suggests trees that are not 
consistent with any of the words

 Bottom-up
◦ Only forms trees consistent with the 

words

◦ But suggests trees that make no sense 
globally
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Control

 Of course, in both cases we left out 
how to keep track of the search space 
and how to make choices
◦ Which node to try to expand next

◦ Which grammar rule to use to expand a 
node

 One approach is called backtracking.
◦ Make a choice, if it works out then fine

◦ If not then back up and make a different 
choice
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Problems

 Even with the best filtering, backtracking 
methods are doomed because of two 
inter-related problems

◦ Ambiguity and search control (choice)

◦ Shared subproblems
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Ambiguity
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Shared Sub-Problems

 No matter what kind of search (top-
down or bottom-up or mixed) that we 
choose...

◦ We can’t afford to redo work we’ve 
already done.

◦ Without some help naïve backtracking will 
lead to such duplicated work.
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Shared Sub-Problems
 Consider
◦ A flight from Indianapolis 

to Houston on TWA
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Sample L1 Grammar
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Shared Sub-Problems

 Assume a top-down parse that has 
already expanded the NP rule (dealing 
with the Det) 

 Now its making choices among the 
various Nominal rules

 In particular, between these two
◦ Nominal -> Noun

◦ Nominal -> Nominal PP

 Statically choosing the rules in this order 
leads to the following bad behavior...
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Shared Sub-Problems
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Shared Sub-Problems
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Shared Sub-Problems
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Shared Sub-Problems
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Dynamic Programming
 DP search methods fill tables with partial results 

and thereby
◦ Avoid doing avoidable repeated work

◦ Solve exponential problems in polynomial time (well not 
really)

◦ Efficiently store ambiguous structures with shared sub-
parts.

 We’ll cover two approaches that roughly 
correspond to top-down and bottom-up 
approaches.
◦ CKY

◦ Earley
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CKY Parsing

 First we’ll limit our grammar to epsilon-
free, binary rules (more on this later)

 Consider the rule A  → BC
◦ If there is an A somewhere in the input 

generated by this rule then there must be a 
B followed by a C in the input.

◦ If the A spans from i to j in the input then 
there must be some k st. i<k<j
 In other words, the B splits from the C someplace 

after the i and before the j.
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CKY

 Build a table so that an A spanning 
from i to j in the input is placed in cell 
[i,j] in the table.
◦ So a non-terminal spanning an entire 

string will sit in cell [0, n]
 Hopefully it will be an S

 Now we know that the parts of the A 
must go from i to k and from k to j, 
for some k
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CKY

 Meaning that for a rule like A → B C we 
should look for a B in [i,k] and a C in 
[k,j].

 In other words, if we think there might 
be an A spanning i,j in the input… AND 

A → B C is a rule in the grammar THEN

 There must be a B in [i,k] and a C in 
[k,j] for some k such that i<k<j

What about the B and the C?
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CKY

 So to fill the table loop over the cells 
[i,j] values in some systematic way

◦ Then for each cell, loop over the 
appropriate k values to search for things 
to add.

◦ Add all the derivations that are possible 
for each [i,j] for each k
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CKY Table
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CKY Algorithm

What’s the complexity of this?
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Example
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Example

Filling column 5



Example
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 Filling column 5 corresponds to processing 
word 5, which is Houston.

◦ So j is 5.

◦ So i goes from 3 to 0 (3,2,1,0)
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Example
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Example
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Example
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Example



Example

 Since there’s an S in [0,5] we have a 
valid parse.

 Are we done?  We we sort of left 
something out of the algorithm
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CKY Notes

 Since it’s bottom up, CKY imagines a lot of 
silly constituents.

◦ Segments that by themselves are constituents 
but cannot really occur in the context in which 
they are being suggested.

◦ To avoid this we can switch to a top-down 
control strategy

◦ Or we can add some kind of filtering that 
blocks constituents where they can not 
happen in a final analysis.
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CKY Notes

 We arranged the loops to fill the table 
a column at a time, from left to right, 
bottom to top. 

◦ This assures us that whenever we’re filling 
a cell, the parts needed to fill it are 
already in the table (to the left and 
below)

◦ It’s somewhat natural in that it processes 
the input a left to right a word at a time

 Known as online



Earley Parsing

 Allows arbitrary CFGs
 Where CKY is bottom-up, Earley is top-down

 Fills a table in a single sweep over the 

input words

◦ Table is length N+1; N is number of words

◦ Table entries represent

 Completed constituents and their locations

 In-progress constituents

 Predicted constituents



Dynamic Programming

 A standard T-D parser would reanalyze A 

FLIGHT 4 times, always in the same way

 A DYNAMIC PROGRAMMING algorithm 

uses a table (the CHART)  to avoid 

repeating work

 The Earley algorithm also

◦ Does not suffer from the left-recursion 

problem

◦ Solves an exponential problem in O(n3)



The Chart

 The Earley algorithm uses a table (the CHART) of size 

N+1, where N is the length of the input

◦ Table entries sit in the `gaps’ between words

 Each  entry  in the chart  is a list of 

◦ Completed constituents

◦ In-progress constituents

◦ Predicted constituents

 All three types of objects are represented in the same 

way as STATES



THE CHART: 

GRAPHICAL REPRESENTATION



States

 A state encodes two types of information:

◦ How much of a certain rule has been 
encountered in the input

◦ Which positions are covered

◦ A → , [X,Y]

 DOTTED RULES

◦ VP →V NP •

◦ NP → Det • Nominal

◦ S → •VP



Examples



Success

 The parser has succeeded if entry N+1 of 

the chart contains the state

◦ S →  •, [0,N]



THE ALGORITHM

 The algorithm loops through the input 

without backtracking, at each step 

performing three operations:

◦ PREDICTOR: add predictions to the chart

◦ COMPLETER: Move the dot to the right 

when looked-for constituent is  found

◦ SCANNER: read in the next input word



THE ALGORITHM: CENTRAL LOOP



EARLEY ALGORITHM: 

THE THREE OPERATORS



EXAMPLE, AGAIN



EXAMPLE: 

BOOK THAT FLIGHT



EXAMPLE: 

BOOK THAT FLIGHT (II)



EXAMPLE: 

BOOK THAT FLIGHT (III)



EXAMPLE: 

BOOK THAT FLIGHT (IV)



Graphically



Earley

 As with most dynamic programming 

approaches, the answer is found by 

looking in the table in the right place.

 In this case, there should be an S state in 

the final column that spans from 0 to n+1 

and is complete.

 If that’s the case you’re done.

◦ S –> α · [0,n+1]



Earley Algorithm

 March through chart left-to-right.

 At each step, apply 1 of 3 operators

◦ Predictor

 Create new states representing top-down 
expectations

◦ Scanner

 Match word predictions (rule with word after dot) 
to words

◦ Completer

 When a state is complete, see what rules were 
looking for that completed constituent



Earley’s example 1

Predict - Scan- Complete

S -> NP . VP

NP -> NP . PP

VP -> . V NP

VP -> . VP PP

PP -> . P NP

NP -> John .

NP -> . Sue

NP -> . Denver

V -> . called

V ->.  sue

P -> . from

John called Sue from Denver

S -> . NP VP

NP -> . NP PP

P -> . V NP

VP -> . VP PP

PP -> . P NP

NP -> . John

NP -> . Sue

NP -> . Denver

V -> . called

V ->.  sue

P -> . from

S -> . NP VP

NP -> . NP PP

NP -> . John

NP -> . Sue

NP -> . Denver



Earley’s example 2
John called Sue from Denver

S -> NP . VP

NP -> NP . PP

VP -> . V NP

VP -> . VP PP

PP -> . P NP

V -> . called

V ->.  sue

P -> . from

S -> NP . VP

NP -> NP . PP

VP -> . V NP

VP -> . VP PP

PP -> . P NP

V -> . called

V ->.  sue

P -> . from

S -> NP . VP

NP -> NP . PP

VP ->  V . NP

V ->  called .



Earley’s example 3
John called Sue from Denver

S -> NP  VP .

S -> NP . VP

NP -> NP . PP

VP ->  V NP .

VP ->  VP .  

PP

NP ->  Sue .

S -> NP . VP

NP ->  NP . PP

VP ->  V . NP

VP -> . VP PP

PP -> . P NP

NP -> . John 

NP -> . Sue

NP -> . Denver

NP -> . Sue



Earley’s example 4
John called Sue from Denver

S -> NP . VP

NP -> NP . PP

VP ->  V . NP

VP ->  VP . PP

PP -> . P NP

P -> . from

P -> . from

S -> NP . VP

NP -> NP . PP

VP ->  VP . PP

PP ->  P . NP

P ->  from .

NP -> . John

NP -> . Sue

NP -> . Denver

NP -> . 

Denver

NP ->  Denver .

PP ->  P  NP .

NP -> NP  PP .

VP ->  VP  PP .

VP ->  V  NP .

S -> NP   VP .



Predictor

 Given a state
◦ With a non-terminal to right of dot

◦ That is not a part-of-speech category

◦ Create a new state for each expansion of the non-
terminal

◦ Place these new states into same chart entry as 
generated state, beginning and ending where 
generating state ends. 

◦ So predictor looking at
 S -> . VP [0,0]  

◦ results in
 VP -> . Verb [0,0]

 VP -> . Verb NP [0,0]



Scanner
 Given a state

◦ With a non-terminal to right of dot

◦ That is a part-of-speech category

◦ If the next word in the input matches this part-of-speech

◦ Create a new state with dot moved over the non-terminal

◦ So scanner looking at
 VP -> . Verb NP [0,0]

◦ If the next word, “book”, can be a verb, add new state:
 VP -> Verb . NP [0,1]

◦ Add this state to chart entry following current one

◦ Note: Earley algorithm uses top-down input to disambiguate 
POS! Only POS predicted by some state can get added to 
chart!



Completer
 Applied to a state when its dot has reached right end of 

role.

 Parser has discovered a category over some span of input.

 Find and advance all previous states that were looking for 
this category

◦ copy state, move dot, insert in current chart entry

 Given:

◦ NP -> Det Nominal . [1,3]

◦ VP -> Verb. NP [0,1]

 Add

◦ VP -> Verb NP . [0,3]



Earley: how do we know we are done?

 How do we know when we are done?

 Find an S state in the final column that 

spans from 0 to n+1 and is complete.

 If that’s the case you’re done.

◦ S –> α · [0,n+1]



Earley

 So sweep through the table from 0 to 

n+1…

◦ New predicted states are created by starting 

top-down from S

◦ New incomplete states are created by 

advancing existing states as new constituents 

are discovered

◦ New complete states are created in the same 

way. 



Earley

 More specifically…

1. Predict all the states you can upfront

2. Read a word

1. Extend states based on matches

2. Add new predictions

3. Go to 2

3. Look at N+1 to see if you have a winner



Example

 Book that flight

 We should find… an S from 0 to 3 that is 

a completed state…



Example



Example



Example



Details

 What kind of algorithms did we just 

describe (both Earley and CKY)

◦ Not parsers – recognizers

 The presence of an S state with the right attributes 

in the right place indicates a successful recognition.

 But no parse tree… no parser

 That’s how we solve (not) an exponential problem 

in polynomial time



Back to Ambiguity

 Did we solve it?



Ambiguity



Converting Earley from Recognizer to Parser

 With the addition of a few pointers we 

have a parser

 Augment the “Completer” to point to 

where we came from.



Augmenting the chart with structural information

S8

S9

S10

S11

S13

S12

S8

S9

S8



Retrieving Parse Trees from Chart

 All the possible parses for an input are in the 
table

 We just need to read off all the backpointers
from every complete S in the last column of the 
table

 Find all the S -> X .  [0,N+1]

 Follow the structural traces from the 
Completer

 Of course, this won’t be polynomial time, since 
there could be an exponential number of trees

 So we can at least represent ambiguity 
efficiently



Statistical Parsing

 Statistical parsing uses a probabilistic model of 
syntax in order to assign probabilities to each 
parse tree.

 Provides principled approach to resolving 
syntactic ambiguity.

 Allows supervised learning of parsers from tree-
banks of parse trees provided by human 
linguists.

 Also allows unsupervised learning of parsers 
from unannotated text, but the accuracy of such 

parsers has been limited.

129
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Probabilistic Context Free Grammar

(PCFG)

 A PCFG is a probabilistic version of a CFG 

where each production has a probability.

 Probabilities of all productions rewriting a 

given non-terminal must add to 1, defining a 

distribution for each non-terminal.

 String generation is now probabilistic where 

production probabilities are used to non-

deterministically select a production for 

rewriting a given non-terminal.



PCFGs – Notation

 w1n = w1 … wn = the word sequence from 1 
to n (sentence of length n) 

 wab = the subsequence wa … wb
 Nj

ab = the nonterminal Nj dominating wa … 
wb

Nj

wa … wb

 We’ll write P(Ni → ζj) to mean    P(Ni → ζj | Ni )

 We’ll want to calculate maxt P(t * wab)



The probability of trees and strings

 P(w1n, t) -- The probability of tree is the 
product of the probabilities of the rules used 
to generate it.

 P(w1n) -- The probability of the string is the 
sum of the probabilities of the trees which 
have that string as their yield

P(w1n) = Σt P(w1n, t)  where t is a parse of w1n


→=→=

=
twXRtABXR

n

i

RPRPtwP
}{}{

1 )()(),(



Example:  A Simple PCFG 

(in Chomsky Normal Form)

S      → NP  VP       1.0     

VP    → V  NP         0.7

VP    → VP  PP        0.3

PP    → P  NP          1.0

P      → with 1.0

V      → saw 1.0

NP  → NP PP 0.4

NP   → astronomers  0.1

NP   → ears               0.18

NP   → saw                0.04

NP   → stars              0.18

NP   → telescope        0.1



=)( 1tP





Tree and String Probabilities

• w15  = astronomers saw stars with ears

• P(t1)     = 1.0 * 0.1 * 0.7 * 1.0 * 0.4 * 0.18 

* 1.0 * 1.0 * 0.18

=  0.0009072

• P(t2)     = 1.0 * 0.1 * 0.3 * 0.7 * 1.0 * 0.18

* 1.0 * 1.0 * 0.18

= 0.0006804 

• P(w15)  =      P(t1)      +     P(t2)

= 0.0009072 + 0.0006804

= 0.0015876 



Simple PCFG for ATIS English

S → NP VP                     

S → Aux NP VP               

S → VP                           

NP → Pronoun

NP → Proper-Noun

NP → Det Nominal

Nominal → Noun

Nominal → Nominal Noun

Nominal → Nominal PP

VP → Verb

VP → Verb NP

VP → VP PP

PP → Prep NP

Grammar

0.8

0.1

0.1

0.2

0.2

0.6

0.3

0.2

0.5

0.2

0.5

0.3

1.0

Prob

+

+

+

+

1.0

1.0

1.0

1.0

Det → the | a   | that | this

0.6  0.2  0.1    0.1

Noun → book | flight | meal | money

0.1     0.5      0.2     0.2

Verb → book | include | prefer

0.5      0.2        0.3

Pronoun → I    | he | she | me

0.5  0.1  0.1    0.3

Proper-Noun → Houston | NWA

0.8         0.2

Aux → does

1.0

Prep → from | to   | on | near | through

0.25  0.25  0.1    0.2     0.2

Lexicon
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Sentence Probability

 Assume productions for each node are chosen 
independently.

 Probability of derivation is the product of the 
probabilities of its productions.

P(D1) = 0.1 x 0.5 x 0.5 x 0.6 x 0.6 x 

0.5 x 0.3 x 1.0 x 0.2 x 0.2 x 

0.5 x 0.8
= 0.0000216

D1
S

VP

Verb          NP

Det    Nominal

Nominal     PP

book

Prep        NP

through

Houston

Proper-Noun

the

flight

Noun

0.5

0.5
0.6

0.6 0.5

1.0

0.2

0.3

0.5 0.2

0.8

0.1



Syntactic Disambiguation

 Resolve ambiguity by picking most probable parse 

tree.

139
139

D2

VP

Verb          NP

Det    Nominalbook

Prep        NP

through

Houston

Proper-Noun

the

flight

Noun

0.5

0.5
0.6

0.6
1.0

0.2
0.3

0.5 0.2

0.8

S

VP

0.1

PP

0.3

P(D2) = 0.1 x 0.3 x 0.5 x 0.6 x 0.5 x

0.6 x 0.3 x 1.0 x 0.5 x 0.2 x

0.2 x 0.8
= 0.00001296



Sentence Probability

 Probability of a sentence is the sum of the 

probabilities of all of its derivations.

140

P(“book the flight through Houston”) = 

P(D1) + P(D2) = 0.0000216 + 0.00001296

= 0.00003456
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Three Useful PCFG Tasks

 Observation likelihood: To classify and 

order sentences.

 Most likely derivation: To determine the 

most likely parse tree for a sentence.

 Maximum likelihood training: To train a 

PCFG to fit empirical training data.



PCFG: Most Likely Derivation

 There is an analog to the Viterbi algorithm 

to efficiently determine the most probable 

derivation (parse tree) for a sentence.

S → NP VP

S → VP

NP → Det A N

NP → NP PP

NP → PropN

A → ε

A → Adj A

PP → Prep NP

VP → V NP

VP → VP PP

0.9

0.1

0.5

0.3

0.2

0.6

0.4

1.0

0.7

0.3

English

PCFG 

Parser

John liked the dog in the pen.
S

NP           VP

John       V     NP          PP

liked    the dog  in the penX
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PCFG: Most Likely Derivation

 There is an analog to the Viterbi algorithm 

to efficiently determine the most probable 

derivation (parse tree) for a sentence.

S → NP VP

S → VP

NP → Det A N

NP → NP PP

NP → PropN

A → ε

A → Adj A

PP → Prep NP

VP → V NP

VP → VP PP

0.9

0.1

0.5

0.3

0.2

0.6

0.4

1.0

0.7

0.3

English

PCFG 

Parser

John liked the dog in the pen.

S

NP           VP

John       V     NP 

liked    the dog  in the pen



Probabilistic CKY

 CKY can be modified for PCFG parsing 
by including in each cell a probability for 
each non-terminal.

 Cell[i,j] must retain the most probable
derivation of each constituent (non-
terminal) covering words i +1 through j 
together with its associated probability.

 When transforming the grammar to CNF, 
must set production probabilities to 
preserve the probability of derivations.



Probabilistic Grammar Conversion

S → NP VP
S → Aux NP VP

S → VP

NP → Pronoun

NP → Proper-Noun

NP → Det Nominal
Nominal → Noun 

Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb

VP → Verb NP
VP → VP PP
PP → Prep NP

Original Grammar Chomsky Normal Form

S → NP VP
S → X1 VP
X1 → Aux NP
S → book | include | prefer

0.01     0.004    0.006
S → Verb NP
S → VP PP
NP →  I   |  he  |  she |  me

0.1   0.02  0.02    0.06
NP → Houston | NWA

0.16           .04
NP → Det Nominal
Nominal → book | flight | meal | money

0.03    0.15   0.06     0.06
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer

0.1      0.04        0.06
VP → Verb NP
VP → VP PP
PP → Prep NP

0.8
0.1

0.1

0.2

0.2

0.6
0.3

0.2
0.5
0.2

0.5
0.3
1.0

0.8
0.1
1.0

0.05
0.03

0.6

0.2
0.5

0.5
0.3
1.0



Probabilistic CKY Parser

146

Book       the        flight    through  Houston

S :.01, VP:.1, 

Verb:.5 

Nominal:.03

Noun:.1

Det:.6

Nominal:.15

Noun:.5

None

NP:.6*.6*.15

=.054



Probabilistic CKY Parser

147

Book       the        flight    through  Houston

S :.01, VP:.1, 

Verb:.5 

Nominal:.03

Noun:.1

Det:.6

Nominal:.15

Noun:.5

None

NP:.6*.6*.15

=.054

VP:.5*.5*.054

=.0135



Probabilistic CKY Parser

148

Book       the        flight    through  Houston

S :.01, VP:.1, 

Verb:.5 

Nominal:.03

Noun:.1

Det:.6

Nominal:.15

Noun:.5

None

NP:.6*.6*.15

=.054

VP:.5*.5*.054

=.0135

S:.05*.5*.054

=.00135



Probabilistic CKY Parser

149

Book       the        flight    through  Houston

S :.01, VP:.1, 

Verb:.5 

Nominal:.03

Noun:.1

Det:.6

Nominal:.15

Noun:.5

None

NP:.6*.6*.15

=.054

VP:.5*.5*.054

=.0135

S:.05*.5*.054

=.00135

None

None

None

Prep:.2



Probabilistic CKY Parser

150

Book       the        flight    through  Houston

S :.01, VP:.1, 

Verb:.5 

Nominal:.03

Noun:.1

Det:.6

Nominal:.15

Noun:.5

None

NP:.6*.6*.15

=.054

VP:.5*.5*.054

=.0135

S:.05*.5*.054

=.00135

None

None

None

Prep:.2

NP:.16

PropNoun:.

8

PP:1.0*.2*.16

=.032



Probabilistic CKY Parser

151

Book       the        flight    through  Houston

S :.01, VP:.1, 

Verb:.5 

Nominal:.03

Noun:.1

Det:.6

Nominal:.15

Noun:.5

None

NP:.6*.6*.15

=.054

VP:.5*.5*.054

=.0135

S:.05*.5*.054

=.00135

None

None

None

Prep:.2

NP:.16

PropNoun:.

8

PP:1.0*.2*.16

=.032

Nominal:

.5*.15*.032

=.0024



Probabilistic CKY Parser

152

Book       the        flight    through  Houston

S :.01, VP:.1, 

Verb:.5 

Nominal:.03

Noun:.1

Det:.6

Nominal:.15

Noun:.5

None

NP:.6*.6*.15

=.054

VP:.5*.5*.054

=.0135

S:.05*.5*.054

=.00135

None

None

None

Prep:.2

NP:.16

PropNoun:.

8

PP:1.0*.2*.16

=.032

Nominal:

.5*.15*.032

=.0024

NP:.6*.6*

.0024

=.000864



Probabilistic CKY Parser

153

Book       the        flight    through  Houston

S :.01, VP:.1, 

Verb:.5 

Nominal:.03

Noun:.1

Det:.6

Nominal:.15

Noun:.5

None

NP:.6*.6*.15

=.054

VP:.5*.5*.054

=.0135

S:.05*.5*.054

=.00135

None

None

None

Prep:.2

NP:.16

PropNoun:.

8

PP:1.0*.2*.16

=.032

Nominal:

.5*.15*.032

=.0024

NP:.6*.6*

.0024

=.000864

S:.05*.5*

.000864

=.0000216



Probabilistic CKY Parser

154

Book       the        flight    through  Houston

S :.01, VP:.1, 

Verb:.5 

Nominal:.03

Noun:.1

Det:.6

Nominal:.15

Noun:.5

None

NP:.6*.6*.15

=.054

VP:.5*.5*.054

=.0135

S:.05*.5*.054

=.00135

None

None

None

Prep:.2

NP:.16

PropNoun:.

8

PP:1.0*.2*.16

=.032

Nominal:

.5*.15*.032

=.0024

NP:.6*.6*

.0024

=.000864

S:.0000216

S:.03*.0135*

.032

=.00001296



Probabilistic CKY Parser

155

Book       the        flight    through  Houston

S :.01, VP:.1, 

Verb:.5 

Nominal:.03

Noun:.1

Det:.6

Nominal:.15

Noun:.5

None

NP:.6*.6*.15

=.054

VP:.5*.5*.054

=.0135

S:.05*.5*.054

=.00135

None

None

None

Prep:.2

NP:.16

PropNoun:.

8

PP:1.0*.2*.16

=.032

Nominal:

.5*.15*.032

=.0024

NP:.6*.6*

.0024

=.000864

S:.0000216
Pick most probable

parse, i.e. take max to

combine probabilities

of multiple derivations

of each constituent in

each cell.
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PCFG: Observation Likelihood

 There is an analog to Forward algorithm for 
HMMs called the Inside algorithm for efficiently 
determining how likely a string is to be produced 
by a PCFG.

 Can use a PCFG as a language model to choose 
between alternative sentences for speech 
recognition or machine translation. 

S → NP VP

S → VP

NP → Det A N

NP → NP PP

NP → PropN

A → ε

A → Adj A

PP → Prep NP

VP → V NP

VP → VP PP

0.9

0.1

0.5

0.3

0.2

0.6

0.4

1.0

0.7

0.3

English

The dog big barked.

The big dog barked

O1

O2

?

?

P(O2 | English) > P(O1 | English) ?



Inside Algorithm

 Use CKY probabilistic parsing algorithm 

but combine probabilities of multiple 

derivations of any constituent using 

addition instead of max.

157
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Book       the        flight    through  Houston

S :.01, VP:.1, 

Verb:.5 

Nominal:.03

Noun:.1

Det:.6

Nominal:.15

Noun:.5

None

NP:.6*.6*.15

=.054

VP:.5*.5*.054

=.0135

S:.05*.5*.054

=.00135

None

None

None

Prep:.2

NP:.16

PropNoun:.

8

PP:1.0*.2*.16

=.032

Nominal:

.5*.15*.032

=.0024

NP:.6*.6*

.0024

=.000864

S:.0000216

S:..00001296

Probabilistic CKY Parser 

for Inside Computation
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Book       the        flight    through  Houston

S :.01, VP:.1, 

Verb:.5 

Nominal:.03

Noun:.1

Det:.6

Nominal:.15

Noun:.5

None

NP:.6*.6*.15

=.054

VP:.5*.5*.054

=.0135

S:.05*.5*.054

=.00135

None

None

None

Prep:.2

NP:.16

PropNoun:.

8

PP:1.0*.2*.16

=.032

Nominal:

.5*.15*.032

=.0024

NP:.6*.6*

.0024

=.000864

+.0000216

=.00003456

S: .00001296 Sum probabilities

of multiple derivations

of each constituent in

each cell.

Probabilistic CKY Parser 

for Inside Computation
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PCFG: Supervised Training

 If parse trees are provided for training sentences, a 

grammar and its parameters can be can all be 

estimated directly from counts accumulated from the 

tree-bank (with appropriate smoothing).

.

.

.

Tree Bank

Supervised

PCFG

Training

S → NP VP

S → VP

NP → Det A N

NP → NP PP

NP → PropN

A → ε

A → Adj A

PP → Prep NP

VP → V NP

VP → VP PP

0.9

0.1

0.5

0.3

0.2

0.6

0.4

1.0

0.7

0.3

English

S

NP           VP

John       V     NP          PP

put    the dog  in the pen

S

NP           VP

John       V     NP          PP

put    the dog  in the pen



Estimating Production Probabilities

 Set of production rules can be taken directly 

from the set of rewrites in the treebank.

 Parameters can be directly estimated from 

frequency counts in the treebank.

161
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162

PCFG: Maximum Likelihood 

Training
 Given a set of sentences, induce a grammar that 

maximizes the probability that this data was 
generated from this grammar.

 Assume the number of non-terminals in the 
grammar is specified.

 Only need to have an unannotated set of 
sequences generated from the model. Does not 
need correct parse trees for these sentences. In this 
sense, it is unsupervised.



163

PCFG: Maximum Likelihood 

Training

John ate the apple

A dog bit Mary

Mary hit the dog

John gave Mary the cat.

.

.

.

Training Sentences

PCFG

Training

S → NP VP

S → VP

NP → Det A N

NP → NP PP

NP → PropN

A → ε

A → Adj A

PP → Prep NP

VP → V NP

VP → VP PP

0.9

0.1

0.5

0.3

0.2

0.6

0.4

1.0

0.7

0.3

English



Inside-Outside

 The Inside-Outside algorithm is a version of EM for 
unsupervised learning of a PCFG.

◦ Analogous to Baum-Welch (forward-backward) for HMMs

 Given the number of non-terminals, construct all possible 
CNF productions with these non-terminals and observed 
terminal symbols.

 Use EM to iteratively train the probabilities of these 
productions to locally maximize the likelihood of the data.

◦ See Manning and Schütze text for details

 Experimental results are not impressive, but recent work 
imposes additional constraints to improve unsupervised 
grammar learning.
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Vanilla PCFG Limitations

 Since probabilities of productions do not rely on 
specific words or concepts, only general 
structural disambiguation is possible (e.g. prefer 
to attach PPs to Nominals).

 Consequently, vanilla PCFGs cannot resolve 
syntactic ambiguities that require semantics to 
resolve, e.g. ate with fork vs. meatballs.

 In order to work well, PCFGs must be 
lexicalized, i.e. productions must be specialized 
to specific words by including their head-word 
in their LHS non-terminals (e.g. VP-ate).



Example of Importance of 

Lexicalization
 A general preference for attaching PPs to NPs 

rather than VPs can be learned by a vanilla PCFG.

 But the desired preference can depend on specific 

words.

166

S → NP VP

S → VP

NP → Det A N

NP → NP PP

NP → PropN

A → ε

A → Adj A

PP → Prep NP

VP → V NP

VP → VP PP

0.9

0.1

0.5

0.3

0.2

0.6

0.4

1.0

0.7

0.3

English

PCFG 

Parser

S

NP           VP

John       V     NP          PP

put    the dog  in the pen

John put the dog in the pen.
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Example of Importance of 

Lexicalization
 A general preference for attaching PPs to NPs 

rather than VPs can be learned by a vanilla PCFG.

 But the desired preference can depend on specific 

words.

S → NP VP

S → VP

NP → Det A N

NP → NP PP

NP → PropN

A → ε

A → Adj A

PP → Prep NP

VP → V NP

VP → VP PP

0.9

0.1

0.5

0.3

0.2

0.6

0.4

1.0

0.7

0.3

English

PCFG 

Parser

S

NP           VP

John       V     NP 

put    the dog  in the penX
John put the dog in the pen.



Head Words

 Syntactic phrases usually have a word in them 

that is most “central” to the phrase.

 Linguists have defined the concept of a lexical 

head of a phrase.

 Simple rules can identify the head of any phrase 

by percolating head words up the parse tree.

◦ Head of a VP is the main verb

◦ Head of an NP is the main noun

◦ Head of a PP is the preposition

◦ Head of a sentence is the head of its VP



Lexicalized Productions

 Specialized productions can be generated by 
including the head word and its POS of each non-
terminal as part of that non-terminal’s symbol.
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VP

VBD          NP

DT    Nominal

Nominal   PP
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IN            NP

in

the

dog

NN

DT    Nominal
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pen

NNP

NP

John

pen-NN

pen-NN

in-IN
dog-NN

dog-NN

dog-NN

liked-VBD

liked-VBD

John-NNP

Nominaldog-NN → Nominaldog-NN PPin-IN



Lexicalized Productions

S

VP

VP                             PP

DT    Nominalput

IN            NP

in

the

dog

NN

DT    Nominal

NNthe

pen

NNP

NP

John

pen-NN

pen-NN

in-IN

dog-NN

dog-NN

put-VBD

put-VBD

John-NNP

NPVBD

put-VBD

VPput-VBD → VPput-VBD PPin-IN



Parameterizing Lexicalized 

Productions
 Accurately estimating parameters on such a 

large number of very specialized productions 

could require enormous amounts of treebank 

data.

 Need some way of estimating parameters for 

lexicalized productions that makes reasonable 

independence assumptions so that accurate 

probabilities for very specific rules can be 

learned.



Collins Parser

 Collins (1999) parser assumes a simple 
generative model of lexicalized 
productions.

 Models productions based on context to 
the left and the right of the head daughter.

◦ LHS → LnLn−1…L1H R1…Rm−1Rm

 First generate the head (H) and then 
repeatedly generate left (Li) and right (Ri) 
context symbols until the symbol STOP is 
generated.



Sample Production Generation

VPput-VBD → VBDput-VBD NPdog-NN PPin-IN

Note: Penn treebank tends to 

have fairly flat parse trees that 

produce long productions. 

VPput-VBD → VBDput-VBD NPdog-NN

HL1

STOP PPin-IN STOP

R1 R2 R3

PL(STOP | VPput-VBD) * PH(VBD | Vpput-VBD)* 

PR(NPdog-NN | VPput-VBD)*

PR(PPin-IN | VPput-VBD) * PR(STOP | VPput-VBD)



Count(PPin-IN right of head in a VPput-VBD production)

Estimating Production Generation 

Parameters

 Estimate PH, PL, and PR parameters from treebank data.

PR(PPin-IN | VPput-VBD) =
Count(symbol right of head in a VPput-VBD)

Count(NPdog-NN right of head in a VPput-VBD production)
PR(NPdog-NN | VPput-VBD) =

• Smooth estimates by linearly interpolating with 
simpler models conditioned on just POS tag or no 
lexical info.

smPR(PPin-IN | VPput-VBD) = 1 PR(PPin-IN | VPput-VBD) 

+ (1− 1) (2 PR(PPin-IN | VPVBD) +

(1− 2) PR(PPin-IN | VP)) 

Count(symbol right of head in a VPput-VBD)



Missed Context Dependence

 Another problem with CFGs is that which 

production is used to expand a non-

terminal is independent of its context.

 However, this independence is frequently 

violated for normal grammars.

◦ NPs that are subjects are more likely to be 

pronouns than NPs that are objects.
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Splitting Non-Terminals

 To provide more contextual information, 

non-terminals can be split into multiple 

new non-terminals based on their parent 

in the parse tree using parent annotation.

◦ A subject NP becomes NP^S since its parent 

node is an S.

◦ An object NP becomes NP^VP since its parent 

node is a VP
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Parent Annotation Example
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S

VP

VBD          NP

DT    Nominal

Nominal   PP

liked

IN            NP

in

the

dog

NN

DT    Nominal

NNthe

pen

NNP

NP

John

^NP

^PP

^Nominal
^Nominal

^NP

^VP

^S^S

^Nominal

^NP

^PP
^Nominal

^NP

^VP^NP

VP^S → VBD^VP NP^VP



Split and Merge 

 Non-terminal splitting greatly increases the size of 
the grammar and the number of parameters that need 
to be learned from limited training data.

 Best approach is to only split non-terminals when it 
improves the accuracy of the grammar.

 May also help to merge some non-terminals to 
remove some un-helpful distinctions and learn more 
accurate parameters for the merged productions. 

 Method: Heuristically search for a combination of 
splits and merges that produces a grammar that 
maximizes the likelihood of the training treebank.
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Treebanks

 English Penn Treebank: Standard corpus for 

testing syntactic parsing consists of 1.2 M words 

of text from the Wall Street Journal (WSJ).

 Typical to train on about 40,000 parsed 

sentences and test on an additional standard 

disjoint test set of 2,416 sentences.

 Chinese Penn Treebank: 100K words from the 

Xinhua news service.

 Other corpora existing in many languages, see 

the Wikipedia article “Treebank”



First WSJ Sentence
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( (S 

(NP-SBJ 

(NP (NNP Pierre) (NNP Vinken) )

(, ,) 

(ADJP 

(NP (CD 61) (NNS years) )

(JJ old) )

(, ,) )

(VP (MD will) 

(VP (VB join) 

(NP (DT the) (NN board) )

(PP-CLR (IN as) 

(NP (DT a) (JJ nonexecutive) (NN director) ))

(NP-TMP (NNP Nov.) (CD 29) )))

(. .) ))



WSJ Sentence with Trace (NONE)
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( (S 

(NP-SBJ (DT The) (NNP Illinois) (NNP Supreme) (NNP Court) )

(VP (VBD ordered) 

(NP-1 (DT the) (NN commission) )

(S 

(NP-SBJ (-NONE- *-1) )

(VP (TO to) 

(VP 

(VP (VB audit) 

(NP 

(NP (NNP Commonwealth) (NNP Edison) (POS 's) )

(NN construction) (NNS expenses) ))

(CC and) 

(VP (VB refund) 

(NP (DT any) (JJ unreasonable) (NNS expenses) ))))))

(. .) ))
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Parsing Evaluation Metrics

 PARSEVAL metrics measure the fraction of the 

constituents that match between the computed and 

human parse trees.  If P is the system’s parse tree and 

T is the human parse tree (the “gold standard”):

◦ Recall = (# correct constituents in P) / (# constituents in T)

◦ Precision = (# correct constituents in P) / (# constituents in P)

 Labeled Precision and labeled recall require getting the 

non-terminal label on the constituent node correct to 

count as correct.

 F1 is the harmonic mean of precision and recall.



Computing Evaluation Metrics

Correct Tree T
S

VP

Verb          NP

Det    Nominal

Nominal     PP

book

Prep        NP

through

Houston

Proper-Noun

the

flight

Noun

Computed Tree P

VP

Verb          NP

Det    Nominalbook

Prep        NP

through

Houston

Proper-Noun

the

flight

Noun

S

VP

PP

# Constituents: 12 # Constituents: 12

# Correct Constituents: 10

Recall = 10/12= 83.3% Precision = 10/12=83.3% F1 = 83.3%
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Treebank Results

 Results of current state-of-the-art systems on the 

English Penn WSJ treebank are slightly greater than 

90% labeled precision and recall.



Discriminative Parse Reranking

 Motivation: Even when the top-ranked parse 
not correct, frequently the correct parse is 
one of those ranked highly by a statistical 
parser.

 Use a discriminative classifier that is trained 
to select the best parse from the N-best 
parses produced by the original parser.

 Reranker can exploit global features of the 
entire parse whereas a PCFG is restricted to 
making decisions based on local info.
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2-Stage Reranking Approach

 Adapt the PCFG parser to produce an N-
best list of the most probable parses in 
addition to the most-likely one.

 Extract from each of these parses, a set of 
global features that help determine if it is 
a good parse tree.

 Train a discriminative classifier (e.g. 
logistic regression) using the best parse in 
each N-best list as positive and others as 
negative.   
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Parse Reranking
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Sample Parse Tree Features

 Probability of the parse from the PCFG.

 The number of parallel conjuncts.

◦ “the bird in the tree and the squirrel on the ground”

◦ “the bird and the squirrel in the tree”

 The degree to which the parse tree is right 
branching.

◦ English parses tend to be right branching (cf. parse of 
“Book the flight through Houston”)

 Frequency of various tree fragments, i.e. specific 
combinations of 2 or 3 rules.
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Evaluation of Reranking

 Reranking is limited by oracle accuracy, 

i.e. the accuracy that results when an 

omniscient oracle picks the best parse 

from the N-best list. 

 Typical current oracle accuracy is around 

F1=97% 

 Reranking can generally improve test 

accuracy of current PCFG models a 

percentage point or two.
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Other Discriminative Parsing

 There are also parsing models that move 

from generative PCFGs to a fully 

discriminative model, e.g. max margin 

parsing (Taskar et al., 2004). 

 There is also a recent model that 

efficiently reranks all of the parses in the 

complete (compactly-encoded) parse 

forest, avoiding the need to generate an N-

best list (forest reranking, Huang, 2008).
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Human Parsing

 Computational parsers can be used to predict human 
reading time as measured by tracking the time taken 
to read each word in a sentence.

 Psycholinguistic studies show that words that are 
more probable given the preceding lexical and 
syntactic context are read faster.

◦ John put the dog in the pen with a lock.

◦ John put the dog in the pen with a bone in the car.

◦ John liked the dog in the pen with a bone.

 Modeling these effects requires an incremental 
statistical parser that incorporates one word at a 
time into a continuously growing parse tree.
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Garden Path Sentences

 People are confused by sentences that seem to have a 
particular syntactic structure but then suddenly violate 
this structure, so the  listener is “lead down the 
garden path”.

◦ The horse raced past the barn fell.

 vs. The horse raced past the barn broke his leg.

◦ The complex houses married students.

◦ The old man the sea.

◦ While Anna dressed the baby spit up on the bed.

 Incremental computational parsers can try to predict 
and explain the problems encountered parsing such 
sentences.
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Center Embedding

 Nested expressions are hard for humans to process 

beyond 1 or 2 levels of nesting.

◦ The rat the cat chased died.

◦ The rat the cat the dog bit chased died.

◦ The rat the cat the dog the boy owned bit chased died.

 Requires remembering and popping incomplete 

constituents from a stack and strains human short-term 

memory.

 Equivalent “tail embedded” (tail recursive) versions 

are easier to understand since no stack is required.

◦ The boy owned a dog that bit a cat that chased a rat that died.
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Dependency Grammars
 An alternative to phrase-structure grammar is to 

define a parse as a directed graph between the words 
of a sentence representing dependencies between the 
words.
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Dependency Graph from Parse Tree

 Can convert a phrase structure parse to a dependency 

tree by making the head of each non-head child of a 

node depend on the head of the head child.
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Unification Grammars

 In order to handle agreement issues more 

effectively, each constituent has a list of features 

such as number, person, gender, etc. which may or 

not be specified for a given constituent.

 In order for two constituents to combine to form a 

larger constituent, their features must unify, i.e. 

consistently combine into a merged set of features.

 Expressive grammars and parsers (e.g. HPSG) have 

been developed using this approach and have been 

partially integrated with modern statistical models 

of disambiguation.
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Mildly Context-Sensitive Grammars

 Some grammatical formalisms provide a degree of 
context-sensitivity that helps capture aspects of NL 
syntax that are not easily handled by CFGs.

 Tree Adjoining Grammar (TAG) is based on 
combining tree fragments rather than individual 
phrases.

 Combinatory Categorial Grammar (CCG) consists of: 

◦ Categorial Lexicon that associates a syntactic and semantic 
category with each word.

◦ Combinatory Rules that define how categories combine to 
form other categories.
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Statistical Parsing Conclusions

 Statistical models such as PCFGs allow 
for probabilistic resolution of ambiguities.

 PCFGs can be easily learned from 
treebanks.

 Lexicalization and non-terminal splitting 
are required to effectively resolve many 
ambiguities.

 Current statistical parsers are quite 
accurate but not yet at the level of human-
expert agreement.
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