
Elements of Syntax for Parsing

March 5, 2025
Brandeis University

CS 115B
Fundamentals of NLP 1

12/28/2024 2

Verb Phrases
 English VPs consist of a head verb along

with 0 or more following constituents
which we’ll call arguments.

12/28/2024 3

Subcategorization

 Even though there are many valid VP
rules in English, not all verbs are allowed
to participate in all those VP rules.

 We can subcategorize the verbs in a
language according to the sets of VP
rules that they participate in.

 This is just an elaboration on the
traditional notion of
transitive/intransitive.

 Modern grammars have many such
classes

12/28/2024 4

Subcategorization

 Sneeze: John sneezed

 Find: Please find [a flight to NY]NP

 Give: Give [me]NP[a cheaper fare]NP

 Help: Can you help [me]NP[with a
flight]PP

 Prefer: I prefer [to leave earlier]TO-VP

 Told: I was told [United has a flight]S

 …

Programming Analogy

 It may help to view things this way

◦ Verbs are functions or methods

◦ They participate in specify the number,
position, and type of the arguments they
take...

 That is, just like the formal parameters to a
method.

12/28/2024 5

12/28/2024 6

Subcategorization

 *John sneezed the book

 *I prefer United has a flight

 *Give with a flight

 As with agreement phenomena, we
need a way to formally express these
facts

12/28/2024 7

Why?

 Right now, the various rules for VPs
overgenerate.

◦ They permit the presence of strings containing
verbs and arguments that don’t go together

◦ For example

◦ VP -> V NP therefore

Sneezed the book is a VP since “sneeze” is a
verb and “the book” is a valid NP

12/28/2024 8

Possible CFG Solution
 Possible solution for

agreement.

 Can use the same
trick for all the
verb/VP classes.

 SgS -> SgNP SgVP

 PlS -> PlNp PlVP

 SgNP -> SgDet
SgNom

 PlNP -> PlDet PlNom

 PlVP -> PlV NP

 SgVP ->SgV Np

 …

12/28/2024 9

CFG Solution for Agreement

 It works and stays within the power of
CFGs

◦ But it is a fairly ugly one

 And it doesn’t scale all that well
because of the interaction among the
various constraints explodes the
number of rules in our grammar.

12/28/2024 10

Summary

 CFGs appear to be just about what we need
to account for a lot of basic syntactic
structure in English.

 But there are problems
◦ That can be dealt with adequately, although not

elegantly, by staying within the CFG framework.

 There are simpler, more elegant, solutions
that take us out of the CFG framework
(beyond its formal power)
◦ LFG, HPSG, Construction grammar, XTAG, etc.
◦ Chapter 15 explores one approach (feature

unification) in more detail

12/28/2024 11

Treebanks

 Treebanks are corpora in which each
sentence has been paired with a parse
structure (presumably the correct one).

 These are generally created
1. By first parsing the collection with an

automatic parser

2. And then having human annotators hand
correct each parse as necessary.

 This generally requires detailed annotation
guidelines that provide a POS tagset, a
grammar, and instructions for how to deal
with particular grammatical constructions.

Parens and Trees

12/28/2024 12

(S (NP (Pro I))

(VP (Verb prefer)

(NP (Det a)

(Nom (Nom (Noun morning))

(Noun flight)))))

12/28/2024 13

Penn Treebank
 Penn TreeBank is a widely used treebank.

Most well known part is
the Wall Street Journal
section of the Penn
TreeBank.

▪1 M words from the
1987-1989 Wall
Street Journal.

12/28/2024 14

Treebank Grammars

 Treebanks implicitly define a grammar
for the language covered in the
treebank.

 Simply take the local rules that make up
the sub-trees in all the trees in the
collection and you have a grammar
◦ The WSJ section gives us about 12k rules if

you do this

 Not complete, but if you have decent
size corpus, you will have a grammar
with decent coverage.

12/28/2024 15

Treebank Grammars

 Such grammars tend to be very flat due to
the fact that they tend to avoid recursion.

◦ To ease annotator’s burden, among things

 For example, the Penn Treebank has
~4500 different rules for VPs. Among
them...

12/28/2024 16

Treebank Uses

 Treebanks (and head-finding) are
particularly critical to the development
of statistical parsers
◦ Chapter 14
 We will get there

 Also valuable to Corpus Linguistics
◦ Investigating the empirical details of

various constructions in a given language
 How often do people use various constructions

and in what contexts...

 Do people ever say X ...

12/28/2024 17

Head Finding

 Finding heads in treebank trees is a
task that arises frequently in many
applications.

◦ As we’ll see it is particularly important in
statistical parsing

 We can visualize this task by
annotating the nodes of a parse tree
with the heads of each corresponding
node.

12/28/2024 18

Lexically Decorated Tree

12/28/2024 19

Head Finding

 Given a tree, the standard way to do
head finding is to use a simple set of
tree traversal rules specific to each
non-terminal in the grammar.

12/28/2024 20

Noun Phrases

12/28/2024 21

Treebank Uses

 Treebanks (and head-finding) are
particularly critical to the development
of statistical parsers

◦ Chapter 14

 Also valuable to Corpus Linguistics
◦ Investigating the empirical details of

various constructions in a given language

12/28/2024 22

Dependency Grammars

 In CFG-style phrase-structure
grammars the main focus is on
constituents and ordering.

 But it turns out you can get a lot done
with just labeled relations among the
words in an utterance.

 In a dependency grammar framework,
a parse is a tree where
◦ The nodes stand for the words in an utterance
◦ The links between the words represent

dependency relations between pairs of words.
 Relations may be typed (labeled), or not.

12/28/2024 23

Dependency Relations

12/28/2024 24

Dependency Parse

12/28/2024 25

Dependency Parsing
 The dependency approach has a number of

advantages over full phrase-structure
parsing.
◦ It deals well with free word order languages

where the constituent structure is quite fluid

◦ Parsing is much faster than with CFG-based
parsers

◦ Dependency structure often captures the
syntactic relations needed by later applications
 CFG-based approaches often extract this same

information from trees anyway

12/28/2024 26

Summary

 Context-free grammars can be used to
model various facts about the syntax of a
language.

 When paired with parsers, such grammars
consititute a critical component in many
applications.

 Constituency is a key phenomena easily
captured with CFG rules.
◦ But agreement and subcategorization do pose

significant problems

 Treebanks pair sentences in corpus with
their corresponding trees.

1. Phrase structure

 Phrase structure trees organize
sentences into constituents or
brackets.

 Each constituent gets a label.

 The constituents are nested in
a tree form.

 Linguists can and do argue
about the details.

 Lots of ambiguity …

Constituency Tests

• How do we know what nodes go in the tree?

• Classic constituency tests:
– Substitution by proform

– Question answers

– Semantic grounds
• Coherence

• Reference

• Idioms

– Dislocation

– Conjunction

• Cross-linguistic arguments

Conflicting Tests

Constituency isn’t always clear.

 Phonological Reduction:
◦ I will go → I’ll go

◦ I want to go → I wanna go

◦ a le centre → au centre

 Coordination
◦ He went to and came from the store.

 Write symbolic or logical rules:

 Use deduction systems to prove parses from words
◦ Minimal grammar on “Fed” sentence: 36 parses
◦ Simple, 10-rule grammar: 592 parses
◦ Real-size grammar: many millions of parses
◦ With hand-built grammar, ~30% of sentences have no parse

 This scales very badly.
◦ Hard to produce enough rules for every variation of language (coverage)
◦ Many, many parses for each valid sentence (disambiguation)

Classical NLP: Parsing

Ambiguity examples

The bad effects of V/N ambiguities

Ambiguities: PP Attachment

Attachments

 I cleaned the dishes from dinner.

 I cleaned the dishes with detergent.

 I cleaned the dishes in my pajamas.

 I cleaned the dishes in the sink.

Syntactic Ambiguities 1
 Prepositional Phrases

They cooked the beans in the pot on the stove with handles.

 Particle vs. Preposition
The puppy tore up the staircase.

 Complement Structure
The tourists objected to the guide that they couldn’t hear.

She knows you like the back of her hand.

 Gerund vs. Participial Adjective
Visiting relatives can be boring.

Changing schedules frequently confused passengers.

Syntactic Ambiguities 2

• Modifier scope within NPs
impractical design requirements

plastic cup holder

• Multiple gap constructions
The chicken is ready to eat.

The contractors are rich enough to sue.

• Coordination scope
Small rats and mice can squeeze into holes or cracks in

the wall.

Classical NLP Parsing:

The problem and its solution
• Very constrained grammars attempt to limit

unlikely/weird parses for sentences
– But the attempt makes the grammars not robust: many

sentences have no parse

• A less constrained grammar can parse more
sentences
– But simple sentences end up with ever more parses

• Solution: We need mechanisms that allow us to find
the most likely parse(s)
– Statistical parsing lets us work with very loose grammars

that admit millions of parses for sentences but to still
quickly find the best parse(s)

Polynomial-time Parsing with
Context Free Grammars

Parsing

Computational task:

Given a set of grammar rules and a sentence, find
a valid parse of the sentence (efficiently)

Naively, you could try all possible trees until you
get to a parse tree that conforms to the
grammar rules, that has “S” at the root, and
that has the right words at the leaves.

But that takes exponential time in the number of words.

39

Aspects of parsing
 Running a grammar backwards to find possible structures for a

sentence

 Parsing can be viewed as a search problem

 Parsing is a hidden data problem

 For the moment, we want to examine all structures for a string of
words

 We can do this bottom-up or top-down

◦ This distinction is independent of depth-first or breadth-first
search – we can do either both ways

◦ We search by building a search tree which his distinct from the
parse tree

Human parsing

 Humans often do ambiguity maintenance
◦ Have the police … eaten their supper?

◦ come in and look around.

◦ taken out and shot.

 But humans also commit early and are
“garden pathed”:
◦ The man who hunts ducks out on weekends.

◦ The cotton shirts are made from grows in
Mississippi.

◦ The horse raced past the barn fell.

A phrase structure grammar

• S → NP VP N → cats

• VP →V NP N → claws

• VP →V NP PP N → people

• NP → NP PP N → scratch

• NP → N V → scratch

• NP → e P → with

• NP → N N

• PP → P NP

• By convention, S is the start symbol, but in the PTB,
we have an extra node at the top (ROOT, TOP)

Phrase structure grammars =

context-free grammars
• G = (T, N, S, R)

–T is set of terminals

–N is set of nonterminals

• For NLP, we usually distinguish out a set P  N of

preterminals, which always rewrite as terminals

• S is the start symbol (one of the nonterminals)

• R is rules/productions of the form X → , where X

is a nonterminal and  is a sequence of terminals

and nonterminals (possibly an empty sequence)

• A grammar G generates a language L.

Probabilistic or stochastic context-

free grammars (PCFGs)
• G = (T, N, S, R, P)

– T is set of terminals

– N is set of nonterminals
• For NLP, we usually distinguish out a set P  N of

preterminals, which always rewrite as terminals

• S is the start symbol (one of the nonterminals)

• R is rules/productions of the form X → , where X is a
nonterminal and  is a sequence of terminals and
nonterminals (possibly an empty sequence)

• P(R) gives the probability of each rule.

• A grammar G generates a language model L.



X  N, P(X → ) =1
X→ R



Soundness and completeness

 A parser is sound if every parse it returns is valid/correct

 A parser terminates if it is guaranteed to not go off into
an infinite loop

 A parser is complete if for any given grammar and
sentence, it is sound, produces every valid parse for
that sentence, and terminates

 (For many purposes, we settle for sound but incomplete
parsers: e.g., probabilistic parsers that return a k-best
list.)

Top-down parsing
• Top-down parsing is goal directed

• A top-down parser starts with a list of constituents
to be built. The top-down parser rewrites the goals in
the goal list by matching one against the LHS of the
grammar rules, and expanding it with the RHS,
attempting to match the sentence to be derived.

• If a goal can be rewritten in several ways, then there
is a choice of which rule to apply (search problem)

• Can use depth-first or breadth-first search, and goal
ordering.

Top-down parsing

Problems with top-down parsing
• Left recursive rules

• A top-down parser will do badly if there are many different rules for
the same LHS. Consider if there are 600 rules for S, 599 of which start
with NP, but one of which starts with V, and the sentence starts with V.

• Useless work: expands things that are possible top-down but not there

• Top-down parsers do well if there is useful grammar-driven control:
search is directed by the grammar

• Top-down is hopeless for rewriting parts of speech (preterminals) with
words (terminals). In practice that is always done bottom-up as lexical
lookup.

• Repeated work: anywhere there is common substructure

Repeated work…

Bottom-up parsing
• Bottom-up parsing is data directed

• The initial goal list of a bottom-up parser is the string to be parsed. If a
sequence in the goal list matches the RHS of a rule, then this sequence
may be replaced by the LHS of the rule.

• Parsing is finished when the goal list contains just the start category.

• If the RHS of several rules match the goal list, then there is a choice of
which rule to apply (search problem)

• Can use depth-first or breadth-first search, and goal ordering.

• The standard presentation is as shift-reduce parsing.

Problems with bottom-up parsing

• Unable to deal with empty categories: termination
problem, unless rewriting empties as constituents is
somehow restricted (but then it's generally
incomplete)

• Useless work: locally possible, but globally impossible.

• Inefficient when there is great lexical ambiguity
(grammar-driven control might help here)

• Conversely, it is data-directed: it attempts to parse
the words that are there.

• Repeated work: anywhere there is common
substructure

Chomsky Normal Form

 All rules are of the form X → Y Z or X → w.
 A transformation to this form doesn’t change the

weak generative capacity of CFGs.
◦ With some extra book-keeping in symbol names, you

can even reconstruct the same trees with a detransform
◦ Unaries/empties are removed recursively
◦ N-ary rules introduce new nonterminals:

 VP → V NP PP becomes VP → V @VP-V and @VP-V → NP PP

 In practice it’s a pain
◦ Reconstructing n-aries is easy
◦ Reconstructing unaries can be trickier

 But it makes parsing easier/more efficient

12/28/2024 53

For Now
 Assume…

◦ You have all the words already in some buffer

◦ The input is not POS tagged prior to parsing

◦ We won’t worry about morphological analysis

◦ All the words are known

◦ These are all problematic in various ways, and
would have to be addressed in real
applications.

12/28/2024 54

Top-Down Search

 Since we’re trying to find trees rooted
with an S (Sentences), why not start
with the rules that give us an S.

 Then we can work our way down from
there to the words.

12/28/2024 55

Top Down Space

12/28/2024 56

Bottom-Up Parsing

 Of course, we also want trees that
cover the input words. So we might
also start with trees that link up with
the words in the right way.

 Then work your way up from there to
larger and larger trees.

12/28/2024 57

Bottom-Up Search

12/28/2024 58

Bottom-Up Search

12/28/2024 59

Bottom-Up Search

12/28/2024 60

Bottom-Up Search

12/28/2024 61

Bottom-Up Search

12/28/2024 62

Top-Down and Bottom-Up

 Top-down
◦ Only searches for trees that can be

answers (i.e. S’s)

◦ But also suggests trees that are not
consistent with any of the words

 Bottom-up
◦ Only forms trees consistent with the

words

◦ But suggests trees that make no sense
globally

12/28/2024 63

Control

 Of course, in both cases we left out
how to keep track of the search space
and how to make choices
◦ Which node to try to expand next

◦ Which grammar rule to use to expand a
node

 One approach is called backtracking.
◦ Make a choice, if it works out then fine

◦ If not then back up and make a different
choice

12/28/2024 64

Problems

 Even with the best filtering, backtracking
methods are doomed because of two
inter-related problems

◦ Ambiguity and search control (choice)

◦ Shared subproblems

12/28/2024 65

Ambiguity

12/28/2024 66

Shared Sub-Problems

 No matter what kind of search (top-
down or bottom-up or mixed) that we
choose...

◦ We can’t afford to redo work we’ve
already done.

◦ Without some help naïve backtracking will
lead to such duplicated work.

12/28/2024 67

Shared Sub-Problems
 Consider
◦ A flight from Indianapolis

to Houston on TWA

12/28/2024 68

Sample L1 Grammar

12/28/2024

Shared Sub-Problems

 Assume a top-down parse that has
already expanded the NP rule (dealing
with the Det)

 Now its making choices among the
various Nominal rules

 In particular, between these two
◦ Nominal -> Noun

◦ Nominal -> Nominal PP

 Statically choosing the rules in this order
leads to the following bad behavior...

12/28/2024 70

Shared Sub-Problems

12/28/2024 71

Shared Sub-Problems

12/28/2024 72

Shared Sub-Problems

12/28/2024 73

Shared Sub-Problems

12/28/2024 74

Dynamic Programming
 DP search methods fill tables with partial results

and thereby
◦ Avoid doing avoidable repeated work

◦ Solve exponential problems in polynomial time (well not
really)

◦ Efficiently store ambiguous structures with shared sub-
parts.

 We’ll cover two approaches that roughly
correspond to top-down and bottom-up
approaches.
◦ CKY

◦ Earley

12/28/2024 75

CKY Parsing

 First we’ll limit our grammar to epsilon-
free, binary rules (more on this later)

 Consider the rule A → BC
◦ If there is an A somewhere in the input

generated by this rule then there must be a
B followed by a C in the input.

◦ If the A spans from i to j in the input then
there must be some k st. i<k<j
 In other words, the B splits from the C someplace

after the i and before the j.

12/28/2024 76

CKY

 Build a table so that an A spanning
from i to j in the input is placed in cell
[i,j] in the table.
◦ So a non-terminal spanning an entire

string will sit in cell [0, n]
 Hopefully it will be an S

 Now we know that the parts of the A
must go from i to k and from k to j,
for some k

12/28/2024 77

CKY

 Meaning that for a rule like A → B C we
should look for a B in [i,k] and a C in
[k,j].

 In other words, if we think there might
be an A spanning i,j in the input… AND

A → B C is a rule in the grammar THEN

 There must be a B in [i,k] and a C in
[k,j] for some k such that i<k<j

What about the B and the C?

12/28/2024 78

CKY

 So to fill the table loop over the cells
[i,j] values in some systematic way

◦ Then for each cell, loop over the
appropriate k values to search for things
to add.

◦ Add all the derivations that are possible
for each [i,j] for each k

12/28/2024 79

CKY Table

12/28/2024 80

CKY Algorithm

What’s the complexity of this?

12/28/2024 81

Example

12/28/2024 82

Example

Filling column 5

Example

12/28/2024 83

 Filling column 5 corresponds to processing
word 5, which is Houston.

◦ So j is 5.

◦ So i goes from 3 to 0 (3,2,1,0)

12/28/2024 84

Example

12/28/2024 85

Example

12/28/2024 86

Example

12/28/2024 87

Example

Example

 Since there’s an S in [0,5] we have a
valid parse.

 Are we done? We we sort of left
something out of the algorithm

12/28/2024 88

12/28/2024 89

CKY Notes

 Since it’s bottom up, CKY imagines a lot of
silly constituents.

◦ Segments that by themselves are constituents
but cannot really occur in the context in which
they are being suggested.

◦ To avoid this we can switch to a top-down
control strategy

◦ Or we can add some kind of filtering that
blocks constituents where they can not
happen in a final analysis.

12/28/2024 90

CKY Notes

 We arranged the loops to fill the table
a column at a time, from left to right,
bottom to top.

◦ This assures us that whenever we’re filling
a cell, the parts needed to fill it are
already in the table (to the left and
below)

◦ It’s somewhat natural in that it processes
the input a left to right a word at a time

 Known as online

Earley Parsing

 Allows arbitrary CFGs
 Where CKY is bottom-up, Earley is top-down

 Fills a table in a single sweep over the

input words

◦ Table is length N+1; N is number of words

◦ Table entries represent

 Completed constituents and their locations

 In-progress constituents

 Predicted constituents

Dynamic Programming

 A standard T-D parser would reanalyze A

FLIGHT 4 times, always in the same way

 A DYNAMIC PROGRAMMING algorithm

uses a table (the CHART) to avoid

repeating work

 The Earley algorithm also

◦ Does not suffer from the left-recursion

problem

◦ Solves an exponential problem in O(n3)

The Chart

 The Earley algorithm uses a table (the CHART) of size

N+1, where N is the length of the input

◦ Table entries sit in the `gaps’ between words

 Each entry in the chart is a list of

◦ Completed constituents

◦ In-progress constituents

◦ Predicted constituents

 All three types of objects are represented in the same

way as STATES

THE CHART:

GRAPHICAL REPRESENTATION

States

 A state encodes two types of information:

◦ How much of a certain rule has been
encountered in the input

◦ Which positions are covered

◦ A → , [X,Y]

 DOTTED RULES

◦ VP →V NP •

◦ NP → Det • Nominal

◦ S → •VP

Examples

Success

 The parser has succeeded if entry N+1 of

the chart contains the state

◦ S →  •, [0,N]

THE ALGORITHM

 The algorithm loops through the input

without backtracking, at each step

performing three operations:

◦ PREDICTOR: add predictions to the chart

◦ COMPLETER: Move the dot to the right

when looked-for constituent is found

◦ SCANNER: read in the next input word

THE ALGORITHM: CENTRAL LOOP

EARLEY ALGORITHM:

THE THREE OPERATORS

EXAMPLE, AGAIN

EXAMPLE:

BOOK THAT FLIGHT

EXAMPLE:

BOOK THAT FLIGHT (II)

EXAMPLE:

BOOK THAT FLIGHT (III)

EXAMPLE:

BOOK THAT FLIGHT (IV)

Graphically

Earley

 As with most dynamic programming

approaches, the answer is found by

looking in the table in the right place.

 In this case, there should be an S state in

the final column that spans from 0 to n+1

and is complete.

 If that’s the case you’re done.

◦ S –> α · [0,n+1]

Earley Algorithm

 March through chart left-to-right.

 At each step, apply 1 of 3 operators

◦ Predictor

 Create new states representing top-down
expectations

◦ Scanner

 Match word predictions (rule with word after dot)
to words

◦ Completer

 When a state is complete, see what rules were
looking for that completed constituent

Earley’s example 1

Predict - Scan- Complete

S -> NP . VP

NP -> NP . PP

VP -> . V NP

VP -> . VP PP

PP -> . P NP

NP -> John .

NP -> . Sue

NP -> . Denver

V -> . called

V ->. sue

P -> . from

John called Sue from Denver

S -> . NP VP

NP -> . NP PP

P -> . V NP

VP -> . VP PP

PP -> . P NP

NP -> . John

NP -> . Sue

NP -> . Denver

V -> . called

V ->. sue

P -> . from

S -> . NP VP

NP -> . NP PP

NP -> . John

NP -> . Sue

NP -> . Denver

Earley’s example 2
John called Sue from Denver

S -> NP . VP

NP -> NP . PP

VP -> . V NP

VP -> . VP PP

PP -> . P NP

V -> . called

V ->. sue

P -> . from

S -> NP . VP

NP -> NP . PP

VP -> . V NP

VP -> . VP PP

PP -> . P NP

V -> . called

V ->. sue

P -> . from

S -> NP . VP

NP -> NP . PP

VP -> V . NP

V -> called .

Earley’s example 3
John called Sue from Denver

S -> NP VP .

S -> NP . VP

NP -> NP . PP

VP -> V NP .

VP -> VP .

PP

NP -> Sue .

S -> NP . VP

NP -> NP . PP

VP -> V . NP

VP -> . VP PP

PP -> . P NP

NP -> . John

NP -> . Sue

NP -> . Denver

NP -> . Sue

Earley’s example 4
John called Sue from Denver

S -> NP . VP

NP -> NP . PP

VP -> V . NP

VP -> VP . PP

PP -> . P NP

P -> . from

P -> . from

S -> NP . VP

NP -> NP . PP

VP -> VP . PP

PP -> P . NP

P -> from .

NP -> . John

NP -> . Sue

NP -> . Denver

NP -> .

Denver

NP -> Denver .

PP -> P NP .

NP -> NP PP .

VP -> VP PP .

VP -> V NP .

S -> NP VP .

Predictor

 Given a state
◦ With a non-terminal to right of dot

◦ That is not a part-of-speech category

◦ Create a new state for each expansion of the non-
terminal

◦ Place these new states into same chart entry as
generated state, beginning and ending where
generating state ends.

◦ So predictor looking at
 S -> . VP [0,0]

◦ results in
 VP -> . Verb [0,0]

 VP -> . Verb NP [0,0]

Scanner
 Given a state

◦ With a non-terminal to right of dot

◦ That is a part-of-speech category

◦ If the next word in the input matches this part-of-speech

◦ Create a new state with dot moved over the non-terminal

◦ So scanner looking at
 VP -> . Verb NP [0,0]

◦ If the next word, “book”, can be a verb, add new state:
 VP -> Verb . NP [0,1]

◦ Add this state to chart entry following current one

◦ Note: Earley algorithm uses top-down input to disambiguate
POS! Only POS predicted by some state can get added to
chart!

Completer
 Applied to a state when its dot has reached right end of

role.

 Parser has discovered a category over some span of input.

 Find and advance all previous states that were looking for
this category

◦ copy state, move dot, insert in current chart entry

 Given:

◦ NP -> Det Nominal . [1,3]

◦ VP -> Verb. NP [0,1]

 Add

◦ VP -> Verb NP . [0,3]

Earley: how do we know we are done?

 How do we know when we are done?

 Find an S state in the final column that

spans from 0 to n+1 and is complete.

 If that’s the case you’re done.

◦ S –> α · [0,n+1]

Earley

 So sweep through the table from 0 to

n+1…

◦ New predicted states are created by starting

top-down from S

◦ New incomplete states are created by

advancing existing states as new constituents

are discovered

◦ New complete states are created in the same

way.

Earley

 More specifically…

1. Predict all the states you can upfront

2. Read a word

1. Extend states based on matches

2. Add new predictions

3. Go to 2

3. Look at N+1 to see if you have a winner

Example

 Book that flight

 We should find… an S from 0 to 3 that is

a completed state…

Example

Example

Example

Details

 What kind of algorithms did we just

describe (both Earley and CKY)

◦ Not parsers – recognizers

 The presence of an S state with the right attributes

in the right place indicates a successful recognition.

 But no parse tree… no parser

 That’s how we solve (not) an exponential problem

in polynomial time

Back to Ambiguity

 Did we solve it?

Ambiguity

Converting Earley from Recognizer to Parser

 With the addition of a few pointers we

have a parser

 Augment the “Completer” to point to

where we came from.

Augmenting the chart with structural information

S8

S9

S10

S11

S13

S12

S8

S9

S8

Retrieving Parse Trees from Chart

 All the possible parses for an input are in the
table

 We just need to read off all the backpointers
from every complete S in the last column of the
table

 Find all the S -> X . [0,N+1]

 Follow the structural traces from the
Completer

 Of course, this won’t be polynomial time, since
there could be an exponential number of trees

 So we can at least represent ambiguity
efficiently

Statistical Parsing

 Statistical parsing uses a probabilistic model of
syntax in order to assign probabilities to each
parse tree.

 Provides principled approach to resolving
syntactic ambiguity.

 Allows supervised learning of parsers from tree-
banks of parse trees provided by human
linguists.

 Also allows unsupervised learning of parsers
from unannotated text, but the accuracy of such

parsers has been limited.

129

130

Probabilistic Context Free Grammar

(PCFG)

 A PCFG is a probabilistic version of a CFG

where each production has a probability.

 Probabilities of all productions rewriting a

given non-terminal must add to 1, defining a

distribution for each non-terminal.

 String generation is now probabilistic where

production probabilities are used to non-

deterministically select a production for

rewriting a given non-terminal.

PCFGs – Notation

 w1n = w1 … wn = the word sequence from 1
to n (sentence of length n)

 wab = the subsequence wa … wb
 Nj

ab = the nonterminal Nj dominating wa …
wb

Nj

wa … wb

 We’ll write P(Ni → ζj) to mean P(Ni → ζj | Ni)

 We’ll want to calculate maxt P(t * wab)

The probability of trees and strings

 P(w1n, t) -- The probability of tree is the
product of the probabilities of the rules used
to generate it.

 P(w1n) -- The probability of the string is the
sum of the probabilities of the trees which
have that string as their yield

P(w1n) = Σt P(w1n, t) where t is a parse of w1n


→=→=

=
twXRtABXR

n

i

RPRPtwP
}{}{

1)()(),(

Example: A Simple PCFG

(in Chomsky Normal Form)

S → NP VP 1.0

VP → V NP 0.7

VP → VP PP 0.3

PP → P NP 1.0

P → with 1.0

V → saw 1.0

NP → NP PP 0.4

NP → astronomers 0.1

NP → ears 0.18

NP → saw 0.04

NP → stars 0.18

NP → telescope 0.1

=)(1tP

Tree and String Probabilities

• w15 = astronomers saw stars with ears

• P(t1) = 1.0 * 0.1 * 0.7 * 1.0 * 0.4 * 0.18

* 1.0 * 1.0 * 0.18

= 0.0009072

• P(t2) = 1.0 * 0.1 * 0.3 * 0.7 * 1.0 * 0.18

* 1.0 * 1.0 * 0.18

= 0.0006804

• P(w15) = P(t1) + P(t2)

= 0.0009072 + 0.0006804

= 0.0015876

Simple PCFG for ATIS English

S → NP VP

S → Aux NP VP

S → VP

NP → Pronoun

NP → Proper-Noun

NP → Det Nominal

Nominal → Noun

Nominal → Nominal Noun

Nominal → Nominal PP

VP → Verb

VP → Verb NP

VP → VP PP

PP → Prep NP

Grammar

0.8

0.1

0.1

0.2

0.2

0.6

0.3

0.2

0.5

0.2

0.5

0.3

1.0

Prob

+

+

+

+

1.0

1.0

1.0

1.0

Det → the | a | that | this

0.6 0.2 0.1 0.1

Noun → book | flight | meal | money

0.1 0.5 0.2 0.2

Verb → book | include | prefer

0.5 0.2 0.3

Pronoun → I | he | she | me

0.5 0.1 0.1 0.3

Proper-Noun → Houston | NWA

0.8 0.2

Aux → does

1.0

Prep → from | to | on | near | through

0.25 0.25 0.1 0.2 0.2

Lexicon

138

Sentence Probability

 Assume productions for each node are chosen
independently.

 Probability of derivation is the product of the
probabilities of its productions.

P(D1) = 0.1 x 0.5 x 0.5 x 0.6 x 0.6 x

0.5 x 0.3 x 1.0 x 0.2 x 0.2 x

0.5 x 0.8
= 0.0000216

D1
S

VP

Verb NP

Det Nominal

Nominal PP

book

Prep NP

through

Houston

Proper-Noun

the

flight

Noun

0.5

0.5
0.6

0.6 0.5

1.0

0.2

0.3

0.5 0.2

0.8

0.1

Syntactic Disambiguation

 Resolve ambiguity by picking most probable parse

tree.

139
139

D2

VP

Verb NP

Det Nominalbook

Prep NP

through

Houston

Proper-Noun

the

flight

Noun

0.5

0.5
0.6

0.6
1.0

0.2
0.3

0.5 0.2

0.8

S

VP

0.1

PP

0.3

P(D2) = 0.1 x 0.3 x 0.5 x 0.6 x 0.5 x

0.6 x 0.3 x 1.0 x 0.5 x 0.2 x

0.2 x 0.8
= 0.00001296

Sentence Probability

 Probability of a sentence is the sum of the

probabilities of all of its derivations.

140

P(“book the flight through Houston”) =

P(D1) + P(D2) = 0.0000216 + 0.00001296

= 0.00003456

141

Three Useful PCFG Tasks

 Observation likelihood: To classify and

order sentences.

 Most likely derivation: To determine the

most likely parse tree for a sentence.

 Maximum likelihood training: To train a

PCFG to fit empirical training data.

PCFG: Most Likely Derivation

 There is an analog to the Viterbi algorithm

to efficiently determine the most probable

derivation (parse tree) for a sentence.

S → NP VP

S → VP

NP → Det A N

NP → NP PP

NP → PropN

A → ε

A → Adj A

PP → Prep NP

VP → V NP

VP → VP PP

0.9

0.1

0.5

0.3

0.2

0.6

0.4

1.0

0.7

0.3

English

PCFG

Parser

John liked the dog in the pen.
S

NP VP

John V NP PP

liked the dog in the penX

143

PCFG: Most Likely Derivation

 There is an analog to the Viterbi algorithm

to efficiently determine the most probable

derivation (parse tree) for a sentence.

S → NP VP

S → VP

NP → Det A N

NP → NP PP

NP → PropN

A → ε

A → Adj A

PP → Prep NP

VP → V NP

VP → VP PP

0.9

0.1

0.5

0.3

0.2

0.6

0.4

1.0

0.7

0.3

English

PCFG

Parser

John liked the dog in the pen.

S

NP VP

John V NP

liked the dog in the pen

Probabilistic CKY

 CKY can be modified for PCFG parsing
by including in each cell a probability for
each non-terminal.

 Cell[i,j] must retain the most probable
derivation of each constituent (non-
terminal) covering words i +1 through j
together with its associated probability.

 When transforming the grammar to CNF,
must set production probabilities to
preserve the probability of derivations.

Probabilistic Grammar Conversion

S → NP VP
S → Aux NP VP

S → VP

NP → Pronoun

NP → Proper-Noun

NP → Det Nominal
Nominal → Noun

Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb

VP → Verb NP
VP → VP PP
PP → Prep NP

Original Grammar Chomsky Normal Form

S → NP VP
S → X1 VP
X1 → Aux NP
S → book | include | prefer

0.01 0.004 0.006
S → Verb NP
S → VP PP
NP → I | he | she | me

0.1 0.02 0.02 0.06
NP → Houston | NWA

0.16 .04
NP → Det Nominal
Nominal → book | flight | meal | money

0.03 0.15 0.06 0.06
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer

0.1 0.04 0.06
VP → Verb NP
VP → VP PP
PP → Prep NP

0.8
0.1

0.1

0.2

0.2

0.6
0.3

0.2
0.5
0.2

0.5
0.3
1.0

0.8
0.1
1.0

0.05
0.03

0.6

0.2
0.5

0.5
0.3
1.0

Probabilistic CKY Parser

146

Book the flight through Houston

S :.01, VP:.1,

Verb:.5

Nominal:.03

Noun:.1

Det:.6

Nominal:.15

Noun:.5

None

NP:.6*.6*.15

=.054

Probabilistic CKY Parser

147

Book the flight through Houston

S :.01, VP:.1,

Verb:.5

Nominal:.03

Noun:.1

Det:.6

Nominal:.15

Noun:.5

None

NP:.6*.6*.15

=.054

VP:.5*.5*.054

=.0135

Probabilistic CKY Parser

148

Book the flight through Houston

S :.01, VP:.1,

Verb:.5

Nominal:.03

Noun:.1

Det:.6

Nominal:.15

Noun:.5

None

NP:.6*.6*.15

=.054

VP:.5*.5*.054

=.0135

S:.05*.5*.054

=.00135

Probabilistic CKY Parser

149

Book the flight through Houston

S :.01, VP:.1,

Verb:.5

Nominal:.03

Noun:.1

Det:.6

Nominal:.15

Noun:.5

None

NP:.6*.6*.15

=.054

VP:.5*.5*.054

=.0135

S:.05*.5*.054

=.00135

None

None

None

Prep:.2

Probabilistic CKY Parser

150

Book the flight through Houston

S :.01, VP:.1,

Verb:.5

Nominal:.03

Noun:.1

Det:.6

Nominal:.15

Noun:.5

None

NP:.6*.6*.15

=.054

VP:.5*.5*.054

=.0135

S:.05*.5*.054

=.00135

None

None

None

Prep:.2

NP:.16

PropNoun:.

8

PP:1.0*.2*.16

=.032

Probabilistic CKY Parser

151

Book the flight through Houston

S :.01, VP:.1,

Verb:.5

Nominal:.03

Noun:.1

Det:.6

Nominal:.15

Noun:.5

None

NP:.6*.6*.15

=.054

VP:.5*.5*.054

=.0135

S:.05*.5*.054

=.00135

None

None

None

Prep:.2

NP:.16

PropNoun:.

8

PP:1.0*.2*.16

=.032

Nominal:

.5*.15*.032

=.0024

Probabilistic CKY Parser

152

Book the flight through Houston

S :.01, VP:.1,

Verb:.5

Nominal:.03

Noun:.1

Det:.6

Nominal:.15

Noun:.5

None

NP:.6*.6*.15

=.054

VP:.5*.5*.054

=.0135

S:.05*.5*.054

=.00135

None

None

None

Prep:.2

NP:.16

PropNoun:.

8

PP:1.0*.2*.16

=.032

Nominal:

.5*.15*.032

=.0024

NP:.6*.6*

.0024

=.000864

Probabilistic CKY Parser

153

Book the flight through Houston

S :.01, VP:.1,

Verb:.5

Nominal:.03

Noun:.1

Det:.6

Nominal:.15

Noun:.5

None

NP:.6*.6*.15

=.054

VP:.5*.5*.054

=.0135

S:.05*.5*.054

=.00135

None

None

None

Prep:.2

NP:.16

PropNoun:.

8

PP:1.0*.2*.16

=.032

Nominal:

.5*.15*.032

=.0024

NP:.6*.6*

.0024

=.000864

S:.05*.5*

.000864

=.0000216

Probabilistic CKY Parser

154

Book the flight through Houston

S :.01, VP:.1,

Verb:.5

Nominal:.03

Noun:.1

Det:.6

Nominal:.15

Noun:.5

None

NP:.6*.6*.15

=.054

VP:.5*.5*.054

=.0135

S:.05*.5*.054

=.00135

None

None

None

Prep:.2

NP:.16

PropNoun:.

8

PP:1.0*.2*.16

=.032

Nominal:

.5*.15*.032

=.0024

NP:.6*.6*

.0024

=.000864

S:.0000216

S:.03*.0135*

.032

=.00001296

Probabilistic CKY Parser

155

Book the flight through Houston

S :.01, VP:.1,

Verb:.5

Nominal:.03

Noun:.1

Det:.6

Nominal:.15

Noun:.5

None

NP:.6*.6*.15

=.054

VP:.5*.5*.054

=.0135

S:.05*.5*.054

=.00135

None

None

None

Prep:.2

NP:.16

PropNoun:.

8

PP:1.0*.2*.16

=.032

Nominal:

.5*.15*.032

=.0024

NP:.6*.6*

.0024

=.000864

S:.0000216
Pick most probable

parse, i.e. take max to

combine probabilities

of multiple derivations

of each constituent in

each cell.

156

PCFG: Observation Likelihood

 There is an analog to Forward algorithm for
HMMs called the Inside algorithm for efficiently
determining how likely a string is to be produced
by a PCFG.

 Can use a PCFG as a language model to choose
between alternative sentences for speech
recognition or machine translation.

S → NP VP

S → VP

NP → Det A N

NP → NP PP

NP → PropN

A → ε

A → Adj A

PP → Prep NP

VP → V NP

VP → VP PP

0.9

0.1

0.5

0.3

0.2

0.6

0.4

1.0

0.7

0.3

English

The dog big barked.

The big dog barked

O1

O2

?

?

P(O2 | English) > P(O1 | English) ?

Inside Algorithm

 Use CKY probabilistic parsing algorithm

but combine probabilities of multiple

derivations of any constituent using

addition instead of max.

157

158

Book the flight through Houston

S :.01, VP:.1,

Verb:.5

Nominal:.03

Noun:.1

Det:.6

Nominal:.15

Noun:.5

None

NP:.6*.6*.15

=.054

VP:.5*.5*.054

=.0135

S:.05*.5*.054

=.00135

None

None

None

Prep:.2

NP:.16

PropNoun:.

8

PP:1.0*.2*.16

=.032

Nominal:

.5*.15*.032

=.0024

NP:.6*.6*

.0024

=.000864

S:.0000216

S:..00001296

Probabilistic CKY Parser

for Inside Computation

159

Book the flight through Houston

S :.01, VP:.1,

Verb:.5

Nominal:.03

Noun:.1

Det:.6

Nominal:.15

Noun:.5

None

NP:.6*.6*.15

=.054

VP:.5*.5*.054

=.0135

S:.05*.5*.054

=.00135

None

None

None

Prep:.2

NP:.16

PropNoun:.

8

PP:1.0*.2*.16

=.032

Nominal:

.5*.15*.032

=.0024

NP:.6*.6*

.0024

=.000864

+.0000216

=.00003456

S: .00001296 Sum probabilities

of multiple derivations

of each constituent in

each cell.

Probabilistic CKY Parser

for Inside Computation

160

PCFG: Supervised Training

 If parse trees are provided for training sentences, a

grammar and its parameters can be can all be

estimated directly from counts accumulated from the

tree-bank (with appropriate smoothing).

.

.

.

Tree Bank

Supervised

PCFG

Training

S → NP VP

S → VP

NP → Det A N

NP → NP PP

NP → PropN

A → ε

A → Adj A

PP → Prep NP

VP → V NP

VP → VP PP

0.9

0.1

0.5

0.3

0.2

0.6

0.4

1.0

0.7

0.3

English

S

NP VP

John V NP PP

put the dog in the pen

S

NP VP

John V NP PP

put the dog in the pen

Estimating Production Probabilities

 Set of production rules can be taken directly

from the set of rewrites in the treebank.

 Parameters can be directly estimated from

frequency counts in the treebank.

161

)count(

)count(

)count(

)count(
)|(












→
=

→

→
=→


P

162

PCFG: Maximum Likelihood

Training
 Given a set of sentences, induce a grammar that

maximizes the probability that this data was
generated from this grammar.

 Assume the number of non-terminals in the
grammar is specified.

 Only need to have an unannotated set of
sequences generated from the model. Does not
need correct parse trees for these sentences. In this
sense, it is unsupervised.

163

PCFG: Maximum Likelihood

Training

John ate the apple

A dog bit Mary

Mary hit the dog

John gave Mary the cat.

.

.

.

Training Sentences

PCFG

Training

S → NP VP

S → VP

NP → Det A N

NP → NP PP

NP → PropN

A → ε

A → Adj A

PP → Prep NP

VP → V NP

VP → VP PP

0.9

0.1

0.5

0.3

0.2

0.6

0.4

1.0

0.7

0.3

English

Inside-Outside

 The Inside-Outside algorithm is a version of EM for
unsupervised learning of a PCFG.

◦ Analogous to Baum-Welch (forward-backward) for HMMs

 Given the number of non-terminals, construct all possible
CNF productions with these non-terminals and observed
terminal symbols.

 Use EM to iteratively train the probabilities of these
productions to locally maximize the likelihood of the data.

◦ See Manning and Schütze text for details

 Experimental results are not impressive, but recent work
imposes additional constraints to improve unsupervised
grammar learning.

165

Vanilla PCFG Limitations

 Since probabilities of productions do not rely on
specific words or concepts, only general
structural disambiguation is possible (e.g. prefer
to attach PPs to Nominals).

 Consequently, vanilla PCFGs cannot resolve
syntactic ambiguities that require semantics to
resolve, e.g. ate with fork vs. meatballs.

 In order to work well, PCFGs must be
lexicalized, i.e. productions must be specialized
to specific words by including their head-word
in their LHS non-terminals (e.g. VP-ate).

Example of Importance of

Lexicalization
 A general preference for attaching PPs to NPs

rather than VPs can be learned by a vanilla PCFG.

 But the desired preference can depend on specific

words.

166

S → NP VP

S → VP

NP → Det A N

NP → NP PP

NP → PropN

A → ε

A → Adj A

PP → Prep NP

VP → V NP

VP → VP PP

0.9

0.1

0.5

0.3

0.2

0.6

0.4

1.0

0.7

0.3

English

PCFG

Parser

S

NP VP

John V NP PP

put the dog in the pen

John put the dog in the pen.

167

Example of Importance of

Lexicalization
 A general preference for attaching PPs to NPs

rather than VPs can be learned by a vanilla PCFG.

 But the desired preference can depend on specific

words.

S → NP VP

S → VP

NP → Det A N

NP → NP PP

NP → PropN

A → ε

A → Adj A

PP → Prep NP

VP → V NP

VP → VP PP

0.9

0.1

0.5

0.3

0.2

0.6

0.4

1.0

0.7

0.3

English

PCFG

Parser

S

NP VP

John V NP

put the dog in the penX
John put the dog in the pen.

Head Words

 Syntactic phrases usually have a word in them

that is most “central” to the phrase.

 Linguists have defined the concept of a lexical

head of a phrase.

 Simple rules can identify the head of any phrase

by percolating head words up the parse tree.

◦ Head of a VP is the main verb

◦ Head of an NP is the main noun

◦ Head of a PP is the preposition

◦ Head of a sentence is the head of its VP

Lexicalized Productions

 Specialized productions can be generated by
including the head word and its POS of each non-
terminal as part of that non-terminal’s symbol.

S

VP

VBD NP

DT Nominal

Nominal PP

liked

IN NP

in

the

dog

NN

DT Nominal

NNthe

pen

NNP

NP

John

pen-NN

pen-NN

in-IN
dog-NN

dog-NN

dog-NN

liked-VBD

liked-VBD

John-NNP

Nominaldog-NN → Nominaldog-NN PPin-IN

Lexicalized Productions

S

VP

VP PP

DT Nominalput

IN NP

in

the

dog

NN

DT Nominal

NNthe

pen

NNP

NP

John

pen-NN

pen-NN

in-IN

dog-NN

dog-NN

put-VBD

put-VBD

John-NNP

NPVBD

put-VBD

VPput-VBD → VPput-VBD PPin-IN

Parameterizing Lexicalized

Productions
 Accurately estimating parameters on such a

large number of very specialized productions

could require enormous amounts of treebank

data.

 Need some way of estimating parameters for

lexicalized productions that makes reasonable

independence assumptions so that accurate

probabilities for very specific rules can be

learned.

Collins Parser

 Collins (1999) parser assumes a simple
generative model of lexicalized
productions.

 Models productions based on context to
the left and the right of the head daughter.

◦ LHS → LnLn−1…L1H R1…Rm−1Rm

 First generate the head (H) and then
repeatedly generate left (Li) and right (Ri)
context symbols until the symbol STOP is
generated.

Sample Production Generation

VPput-VBD → VBDput-VBD NPdog-NN PPin-IN

Note: Penn treebank tends to

have fairly flat parse trees that

produce long productions.

VPput-VBD → VBDput-VBD NPdog-NN

HL1

STOP PPin-IN STOP

R1 R2 R3

PL(STOP | VPput-VBD) * PH(VBD | Vpput-VBD)*

PR(NPdog-NN | VPput-VBD)*

PR(PPin-IN | VPput-VBD) * PR(STOP | VPput-VBD)

Count(PPin-IN right of head in a VPput-VBD production)

Estimating Production Generation

Parameters

 Estimate PH, PL, and PR parameters from treebank data.

PR(PPin-IN | VPput-VBD) =
Count(symbol right of head in a VPput-VBD)

Count(NPdog-NN right of head in a VPput-VBD production)
PR(NPdog-NN | VPput-VBD) =

• Smooth estimates by linearly interpolating with
simpler models conditioned on just POS tag or no
lexical info.

smPR(PPin-IN | VPput-VBD) = 1 PR(PPin-IN | VPput-VBD)

+ (1− 1) (2 PR(PPin-IN | VPVBD) +

(1− 2) PR(PPin-IN | VP))

Count(symbol right of head in a VPput-VBD)

Missed Context Dependence

 Another problem with CFGs is that which

production is used to expand a non-

terminal is independent of its context.

 However, this independence is frequently

violated for normal grammars.

◦ NPs that are subjects are more likely to be

pronouns than NPs that are objects.

175

Splitting Non-Terminals

 To provide more contextual information,

non-terminals can be split into multiple

new non-terminals based on their parent

in the parse tree using parent annotation.

◦ A subject NP becomes NP^S since its parent

node is an S.

◦ An object NP becomes NP^VP since its parent

node is a VP

176

Parent Annotation Example

177

S

VP

VBD NP

DT Nominal

Nominal PP

liked

IN NP

in

the

dog

NN

DT Nominal

NNthe

pen

NNP

NP

John

^NP

^PP

^Nominal
^Nominal

^NP

^VP

^S^S

^Nominal

^NP

^PP
^Nominal

^NP

^VP^NP

VP^S → VBD^VP NP^VP

Split and Merge

 Non-terminal splitting greatly increases the size of
the grammar and the number of parameters that need
to be learned from limited training data.

 Best approach is to only split non-terminals when it
improves the accuracy of the grammar.

 May also help to merge some non-terminals to
remove some un-helpful distinctions and learn more
accurate parameters for the merged productions.

 Method: Heuristically search for a combination of
splits and merges that produces a grammar that
maximizes the likelihood of the training treebank.

178

179

Treebanks

 English Penn Treebank: Standard corpus for

testing syntactic parsing consists of 1.2 M words

of text from the Wall Street Journal (WSJ).

 Typical to train on about 40,000 parsed

sentences and test on an additional standard

disjoint test set of 2,416 sentences.

 Chinese Penn Treebank: 100K words from the

Xinhua news service.

 Other corpora existing in many languages, see

the Wikipedia article “Treebank”

First WSJ Sentence

180

((S

(NP-SBJ

(NP (NNP Pierre) (NNP Vinken))

(, ,)

(ADJP

(NP (CD 61) (NNS years))

(JJ old))

(, ,))

(VP (MD will)

(VP (VB join)

(NP (DT the) (NN board))

(PP-CLR (IN as)

(NP (DT a) (JJ nonexecutive) (NN director)))

(NP-TMP (NNP Nov.) (CD 29))))

(. .)))

WSJ Sentence with Trace (NONE)

181

((S

(NP-SBJ (DT The) (NNP Illinois) (NNP Supreme) (NNP Court))

(VP (VBD ordered)

(NP-1 (DT the) (NN commission))

(S

(NP-SBJ (-NONE- *-1))

(VP (TO to)

(VP

(VP (VB audit)

(NP

(NP (NNP Commonwealth) (NNP Edison) (POS 's))

(NN construction) (NNS expenses)))

(CC and)

(VP (VB refund)

(NP (DT any) (JJ unreasonable) (NNS expenses)))))))

(. .)))

182

Parsing Evaluation Metrics

 PARSEVAL metrics measure the fraction of the

constituents that match between the computed and

human parse trees. If P is the system’s parse tree and

T is the human parse tree (the “gold standard”):

◦ Recall = (# correct constituents in P) / (# constituents in T)

◦ Precision = (# correct constituents in P) / (# constituents in P)

 Labeled Precision and labeled recall require getting the

non-terminal label on the constituent node correct to

count as correct.

 F1 is the harmonic mean of precision and recall.

Computing Evaluation Metrics

Correct Tree T
S

VP

Verb NP

Det Nominal

Nominal PP

book

Prep NP

through

Houston

Proper-Noun

the

flight

Noun

Computed Tree P

VP

Verb NP

Det Nominalbook

Prep NP

through

Houston

Proper-Noun

the

flight

Noun

S

VP

PP

Constituents: 12 # Constituents: 12

Correct Constituents: 10

Recall = 10/12= 83.3% Precision = 10/12=83.3% F1 = 83.3%

184

Treebank Results

 Results of current state-of-the-art systems on the

English Penn WSJ treebank are slightly greater than

90% labeled precision and recall.

Discriminative Parse Reranking

 Motivation: Even when the top-ranked parse
not correct, frequently the correct parse is
one of those ranked highly by a statistical
parser.

 Use a discriminative classifier that is trained
to select the best parse from the N-best
parses produced by the original parser.

 Reranker can exploit global features of the
entire parse whereas a PCFG is restricted to
making decisions based on local info.

185

2-Stage Reranking Approach

 Adapt the PCFG parser to produce an N-
best list of the most probable parses in
addition to the most-likely one.

 Extract from each of these parses, a set of
global features that help determine if it is
a good parse tree.

 Train a discriminative classifier (e.g.
logistic regression) using the best parse in
each N-best list as positive and others as
negative.

186

Parse Reranking

187

sentence
N-Best

Parse Trees
PCFG Parser

Parse Tree

Feature

Extractor

Parse Tree

Descriptions

Discriminative

Parse Tree

Classifier

Best

Parse Tree

Sample Parse Tree Features

 Probability of the parse from the PCFG.

 The number of parallel conjuncts.

◦ “the bird in the tree and the squirrel on the ground”

◦ “the bird and the squirrel in the tree”

 The degree to which the parse tree is right
branching.

◦ English parses tend to be right branching (cf. parse of
“Book the flight through Houston”)

 Frequency of various tree fragments, i.e. specific
combinations of 2 or 3 rules.

188

Evaluation of Reranking

 Reranking is limited by oracle accuracy,

i.e. the accuracy that results when an

omniscient oracle picks the best parse

from the N-best list.

 Typical current oracle accuracy is around

F1=97%

 Reranking can generally improve test

accuracy of current PCFG models a

percentage point or two.

189

Other Discriminative Parsing

 There are also parsing models that move

from generative PCFGs to a fully

discriminative model, e.g. max margin

parsing (Taskar et al., 2004).

 There is also a recent model that

efficiently reranks all of the parses in the

complete (compactly-encoded) parse

forest, avoiding the need to generate an N-

best list (forest reranking, Huang, 2008).

190

Human Parsing

 Computational parsers can be used to predict human
reading time as measured by tracking the time taken
to read each word in a sentence.

 Psycholinguistic studies show that words that are
more probable given the preceding lexical and
syntactic context are read faster.

◦ John put the dog in the pen with a lock.

◦ John put the dog in the pen with a bone in the car.

◦ John liked the dog in the pen with a bone.

 Modeling these effects requires an incremental
statistical parser that incorporates one word at a
time into a continuously growing parse tree.

191

Garden Path Sentences

 People are confused by sentences that seem to have a
particular syntactic structure but then suddenly violate
this structure, so the listener is “lead down the
garden path”.

◦ The horse raced past the barn fell.

 vs. The horse raced past the barn broke his leg.

◦ The complex houses married students.

◦ The old man the sea.

◦ While Anna dressed the baby spit up on the bed.

 Incremental computational parsers can try to predict
and explain the problems encountered parsing such
sentences.

192

Center Embedding

 Nested expressions are hard for humans to process

beyond 1 or 2 levels of nesting.

◦ The rat the cat chased died.

◦ The rat the cat the dog bit chased died.

◦ The rat the cat the dog the boy owned bit chased died.

 Requires remembering and popping incomplete

constituents from a stack and strains human short-term

memory.

 Equivalent “tail embedded” (tail recursive) versions

are easier to understand since no stack is required.

◦ The boy owned a dog that bit a cat that chased a rat that died.

193

Dependency Grammars
 An alternative to phrase-structure grammar is to

define a parse as a directed graph between the words
of a sentence representing dependencies between the
words.

194

liked

John dog

pen

inthe

the

liked

John dog

pen

in

the

the

nsubj dobj

det

det

Typed

dependency

parse

Dependency Graph from Parse Tree

 Can convert a phrase structure parse to a dependency

tree by making the head of each non-head child of a

node depend on the head of the head child.

195

S

VP

VBD NP

DT Nominal

Nominal PP

liked

IN NP

in

the

dog

NN

DT Nominal

NNthe

pen

NNP

NP

John

pen-NN

pen-NN

in-IN
dog-NN

dog-NN

dog-NN

liked-VBD

liked-VBD

John-NNP

liked

John dog

pen

inthe

the

Unification Grammars

 In order to handle agreement issues more

effectively, each constituent has a list of features

such as number, person, gender, etc. which may or

not be specified for a given constituent.

 In order for two constituents to combine to form a

larger constituent, their features must unify, i.e.

consistently combine into a merged set of features.

 Expressive grammars and parsers (e.g. HPSG) have

been developed using this approach and have been

partially integrated with modern statistical models

of disambiguation.

196

Mildly Context-Sensitive Grammars

 Some grammatical formalisms provide a degree of
context-sensitivity that helps capture aspects of NL
syntax that are not easily handled by CFGs.

 Tree Adjoining Grammar (TAG) is based on
combining tree fragments rather than individual
phrases.

 Combinatory Categorial Grammar (CCG) consists of:

◦ Categorial Lexicon that associates a syntactic and semantic
category with each word.

◦ Combinatory Rules that define how categories combine to
form other categories.

197

Statistical Parsing Conclusions

 Statistical models such as PCFGs allow
for probabilistic resolution of ambiguities.

 PCFGs can be easily learned from
treebanks.

 Lexicalization and non-terminal splitting
are required to effectively resolve many
ambiguities.

 Current statistical parsers are quite
accurate but not yet at the level of human-
expert agreement.

198

