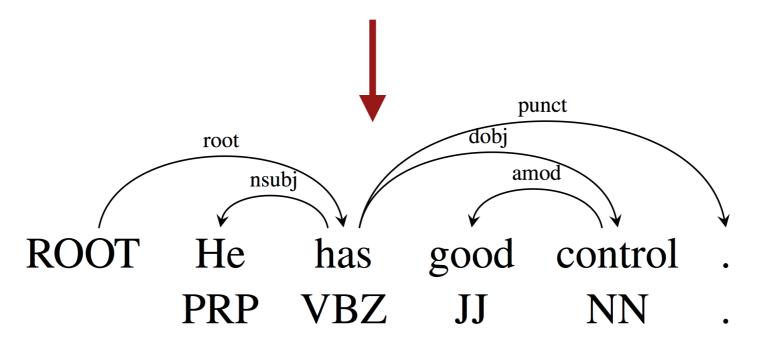
A Fast and Accurate Dependency Parser using Neural Networks

Danqi Chen and Christopher Manning
Stanford University

October 27, 2014

Dependency Parsing

He has good control.



Goal: accurate and fast parsing

A neural network based dependency parser!

A neural network based dependency parser!

Parsing on English Penn Treebank (§23):

Unlabeled attachment score (UAS)

sent / s

Transition -based

A neural network based dependency parser!

Ur	Unlabeled attachment score (UAS)		
Transition	MaltParser (greedy)	89.9	560
-based			

A neural network based dependency parser!

Unlabeled attachment score (UAS)			sent/s
Transition -based	MaltParser (greedy)	89.9	560
	7par: beam = 64	92.9*	29*

A neural network based dependency parser!

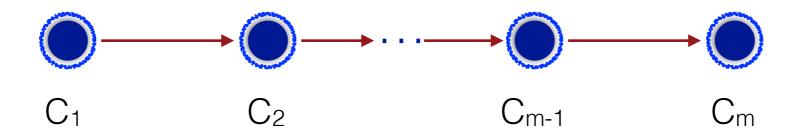
Ur	nlabeled attachment score (UAS)		sent / s
Transition -based	MaltParser (greedy)	89.9	560
-Daseu			
	Zpar: beam = 64	92.9*	29*
Graph -based	MSTParser	92.0	12
	TurboParser	93.1*	31*

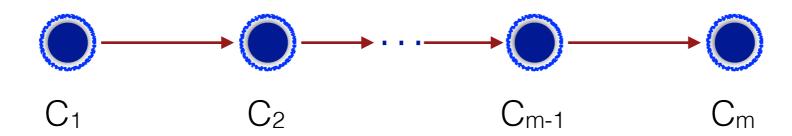
A neural network based dependency parser!

Unlabeled attachment score (UAS) sent / s			
Transition -based	MaltParser (greedy)	89.9	560 × 1 8
	Our Parser (greedy)	92.0	1013
	Zpar: beam = 64	92.9*	29*
Graph -based	MSTParser	92.0	12
	TurboParser	93.1*	31*

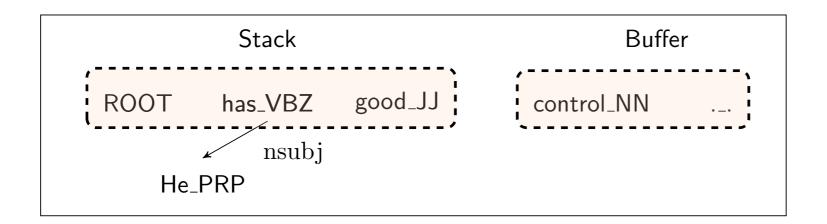
Outline

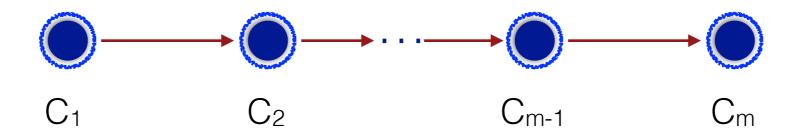
- Background & Motivation
- Model
- Experiments
- Analysis



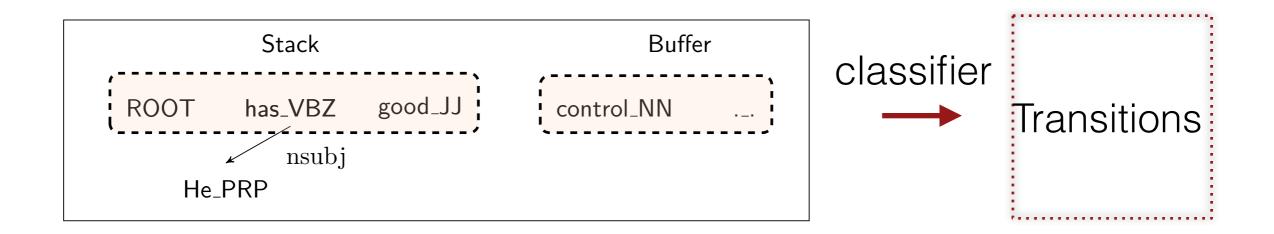


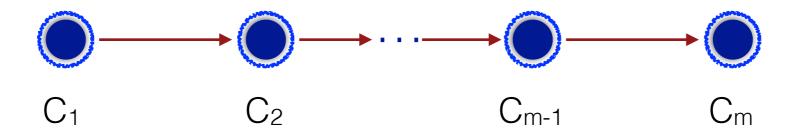
A configuration = a stack, a buffer and some dependency arcs



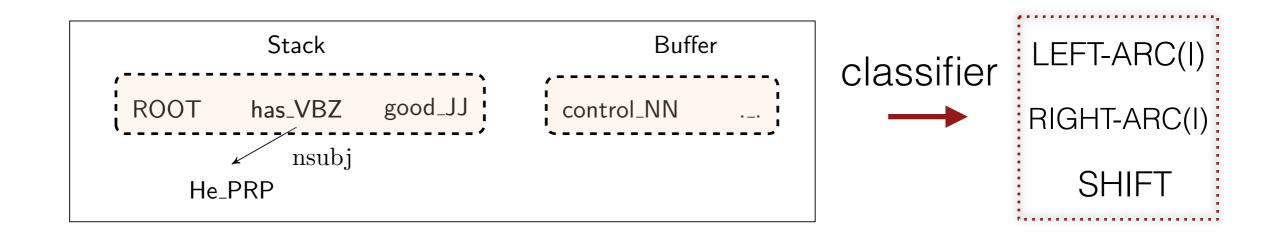


A configuration = a stack, a buffer and some dependency arcs





A configuration = a stack, a buffer and some dependency arcs



We employ the arc-standard system.

LEFT-ARC (I)

```
ROOT has_VBZ good_JJ control_NN ._.

He_PRP
```

```
stack buffer

ROOT good_JJ control_NN ._.

has_VBZ

nsubj
He_PRP
```


RIGHT-ARC (I)

```
ROOT has_VBZ good_JJ control_NN ._.

He_PRP
```

```
ROOT has_VBZ control_NN ._.

nsubj A
He_PRP good_JJ
```



```
stack buffer

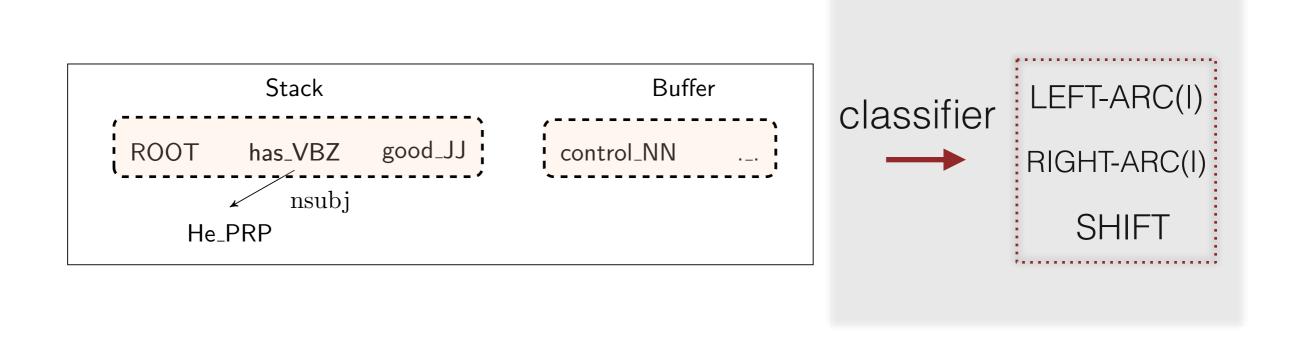
ROOT has_VBZ good_JJ control_NN ._.

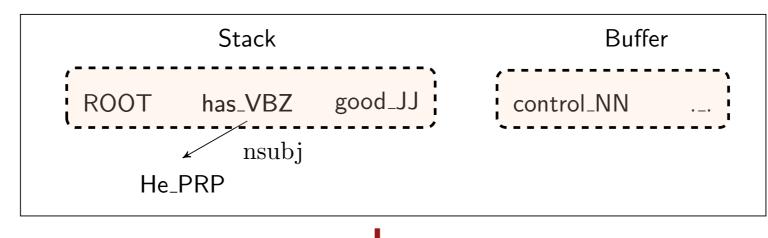
nsubj

He_PRP
```

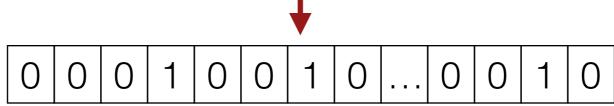
```
ROOT has_VBZ good_JJ control_NN ._.

nsubj
He_PRP
```



binary, sparse dim = $10^6 \sim 10^7$



Feature templates: usually a combination of **1 ~ 3** elements from the configuration.



binary, sparse dim = 10⁶ ~ 10⁷

Indicator features

$$s_2.w = \text{has} \land s_2.t = \text{VBZ}$$

 $s_1.w = \text{good} \land s_1.t = \text{JJ} \land b_1.w = \text{control}$
 $lc(s_2).t = \text{PRP} \land s_2.t = \text{VBZ} \land s_1.t = \text{JJ}$
 $lc(s_2).w = \text{He} \land lc(s_2).l = \text{nsubj} \land s_2.w = \text{has}$



binary, sparse dim = 10⁶ ~ 10⁷

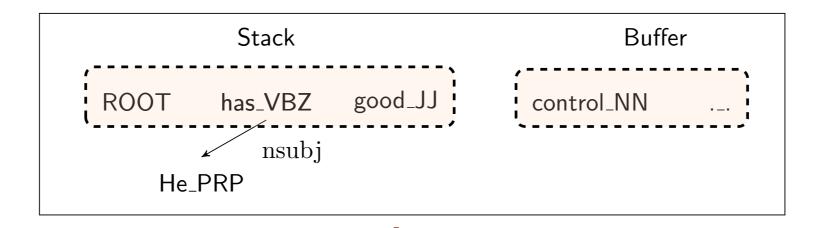
Indicator features

$$(s_2)w = \text{has} \land s_2.t = \text{VBZ}$$

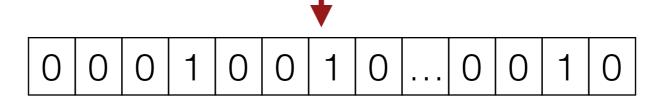
$$(s_1)w = \text{good} \land s_1.t = \text{JJ} \land (b_1)w = \text{control}$$

$$lc(s_2).t = \text{PRP} \land s_2.t = \text{VBZ} \land s_1.t = \text{JJ}$$

$$lc(s_2).w = \text{He} \land lc(s_2).l = \text{nsubj} \land s_2.w = \text{has}$$



binary, sparse dim = 10⁶ ~ 10⁷



Indicator features

word part-of-speech tag
$$s_2.w = \text{has} \land s_2.t = \text{VBZ}$$

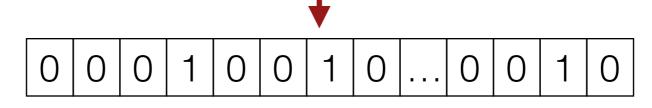
$$s_1.w = \text{good} \land s_1.t = \text{JJ} \land b_1.w = \text{control}$$

$$lc(s_2).t = \text{PRP} \land s_2.t = \text{VBZ} \land s_1.t = \text{JJ}$$

$$lc(s_2).w = \text{He} \land lc(s_2).l = \text{nsubj} \land s_2.w = \text{has}$$
 dep. label



binary, sparse dim = 10⁶ ~ 10⁷



Indicator features

$$s_2.w = \text{has} \land s_2.t = \text{VBZ}$$

 $s_1.w = \text{good} \land s_1.t = \text{JJ} \land b_1.w = \text{control}$
 $lc(s_2).t = \text{PRP} \land s_2.t = \text{VBZ} \land s_1.t = \text{JJ}$
 $lc(s_2).w = \text{He} \land lc(s_2).l = \text{nsubj} \land s_2.w = \text{has}$

leftmost child

$$s_2.w = \text{has} \land s_2.t = \text{VBZ}$$

 $s_1.w = \text{good} \land s_1.t = \text{JJ} \land b_1.w = \text{control}$
 $lc(s_2).t = \text{PRP} \land s_2.t = \text{VBZ} \land s_1.t = \text{JJ}$
 $lc(s_2).w = \text{He} \land lc(s_2).l = \text{nsubj} \land s_2.w = \text{has}$

Problem #1: sparse

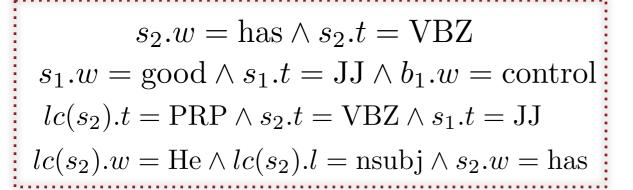
- lexicalized features
- high-order interaction features

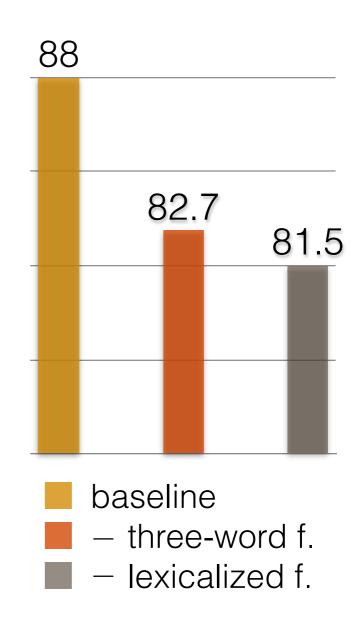
$$s_2.w = \text{has} \land s_2.t = \text{VBZ}$$

 $s_1.w = \text{good} \land s_1.t = \text{JJ} \land b_1.w = \text{control}$
 $lc(s_2).t = \text{PRP} \land s_2.t = \text{VBZ} \land s_1.t = \text{JJ}$
 $lc(s_2).w = \text{He} \land lc(s_2).l = \text{nsubj} \land s_2.w = \text{has}$

Problem #1: sparse

- lexicalized features
- high-order interaction features





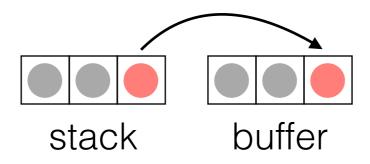
Problem #1: sparse

$$s_2.w = \text{has} \land s_2.t = \text{VBZ}$$

 $s_1.w = \text{good} \land s_1.t = \text{JJ} \land b_1.w = \text{control}$
 $lc(s_2).t = \text{PRP} \land s_2.t = \text{VBZ} \land s_1.t = \text{JJ}$
 $lc(s_2).w = \text{He} \land lc(s_2).l = \text{nsubj} \land s_2.w = \text{has}$

- Problem #1: sparse
- Problem #2: incomplete

Unavoidable in hand-crafted feature templates.



$$s_2.w = \text{has} \land s_2.t = \text{VBZ}$$

 $s_1.w = \text{good} \land s_1.t = \text{JJ} \land b_1.w = \text{control}$
 $lc(s_2).t = \text{PRP} \land s_2.t = \text{VBZ} \land s_1.t = \text{JJ}$
 $lc(s_2).w = \text{He} \land lc(s_2).l = \text{nsubj} \land s_2.w = \text{has}$

- Problem #1: sparse
- Problem #2: incomplete

$$s_2.w = \text{has} \land s_2.t = \text{VBZ}$$

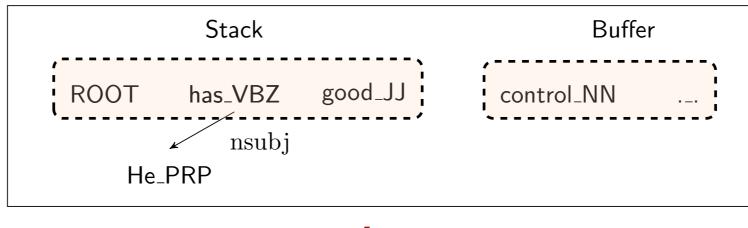
 $s_1.w = \text{good} \land s_1.t = \text{JJ} \land b_1.w = \text{control}$
 $lc(s_2).t = \text{PRP} \land s_2.t = \text{VBZ} \land s_1.t = \text{JJ}$
 $lc(s_2).w = \text{He} \land lc(s_2).l = \text{nsubj} \land s_2.w = \text{has}$

- Problem #1: sparse
- Problem #2: incomplete
- Problem #3: computationally expensive

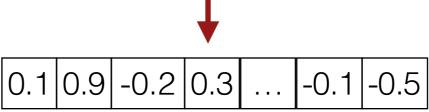
More than 95% of parsing time is consumed by feature computation.

$$s_2.w = \text{has} \land s_2.t = \text{VBZ}$$

 $s_1.w = \text{good} \land s_1.t = \text{JJ} \land b_1.w = \text{control}$
 $lc(s_2).t = \text{PRP} \land s_2.t = \text{VBZ} \land s_1.t = \text{JJ}$
 $lc(s_2).w = \text{He} \land lc(s_2).l = \text{nsubj} \land s_2.w = \text{has}$



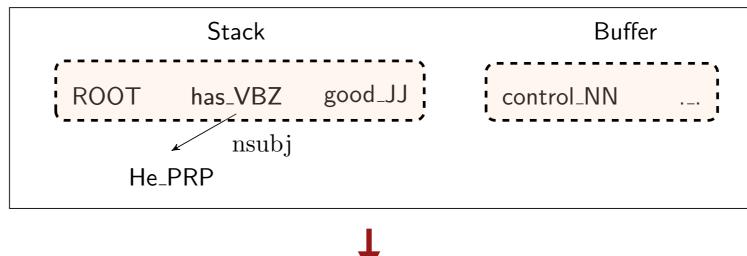
dense dim = 200



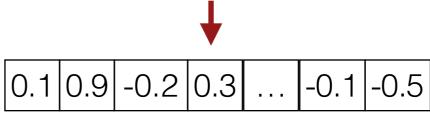
Our Solution: Neural Networks!

Learn a dense and compact feature representation

The Challenge

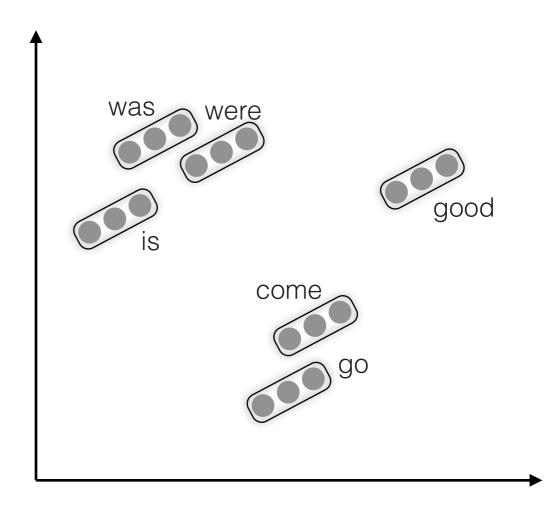


dense dim = 200



- How to encode all the available information?
- How to model high-order features?

- We represent each word as a d-dimensional dense vector (i.e., word embeddings).
 - Similar words expect to have close vectors.



- We represent each word as a d-dimensional dense vector (i.e., word embeddings).
 - Similar words expect to have close vectors.
- Meanwhile, part-of-speech tags and dependency labels are also represented as d-dimensional vectors.
 - POS and dependency embeddings.
 - The smaller discrete sets also exhibit many semantical similarities.

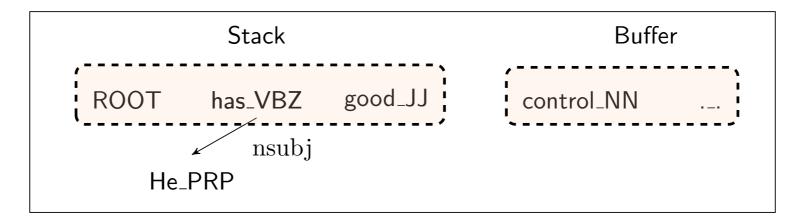
- We represent each word as a d-dimensional dense vector (i.e., word embeddings).
 - Similar words expect to have close vectors.
- Meanwhile, part-of-speech tags and dependency labels are also represented as d-dimensional vectors.
 - POS and dependency embeddings.
 - The smaller discrete sets also exhibit many semantical similarities.

NNS (plural noun) should be close to NN (singular noun).

num (numerical modifier) should be close to amod (adjective modifier).

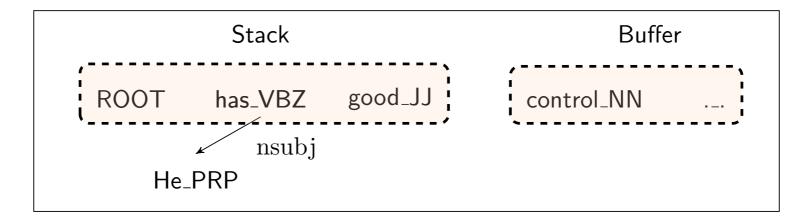
Extracting Tokens from Configuration

We extract a set of tokens based on the positions:



Extracting Tokens from Configuration

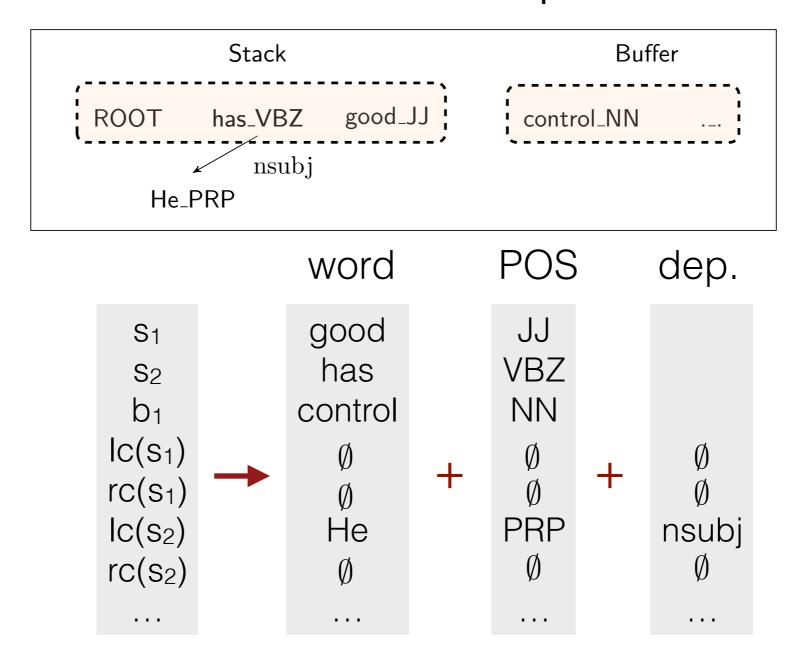
We extract a set of tokens based on the positions:

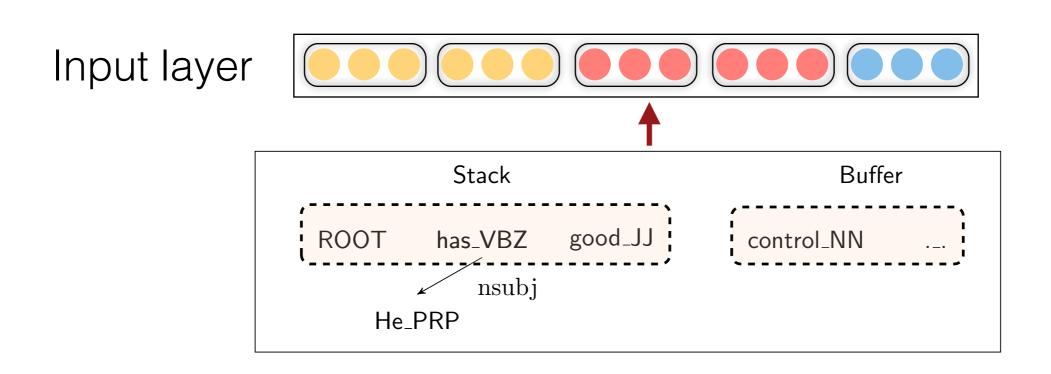


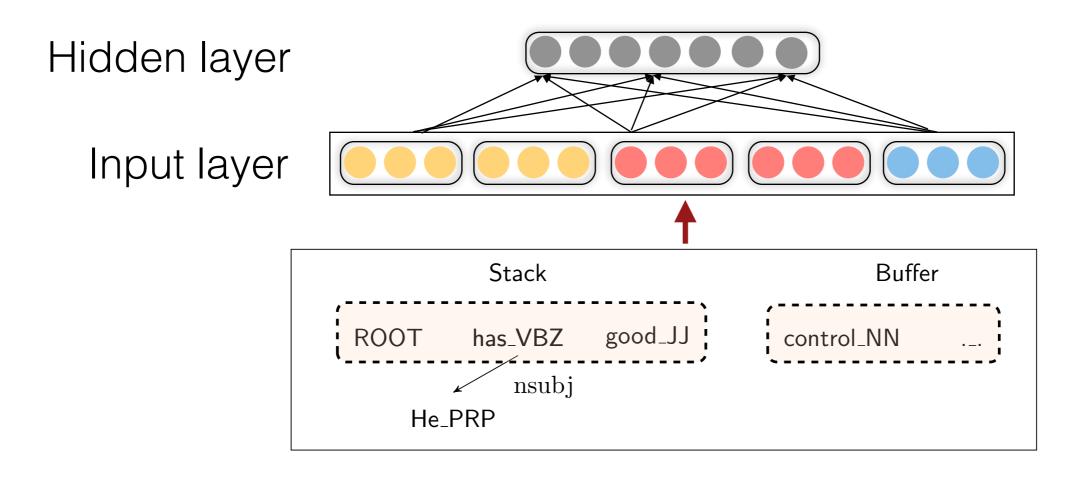
```
S<sub>1</sub>
S<sub>2</sub>
b<sub>1</sub>
Ic(s<sub>1</sub>)
rc(s<sub>1</sub>)
Ic(s<sub>2</sub>)
rc(s<sub>2</sub>)
```


Extracting Tokens from Configuration

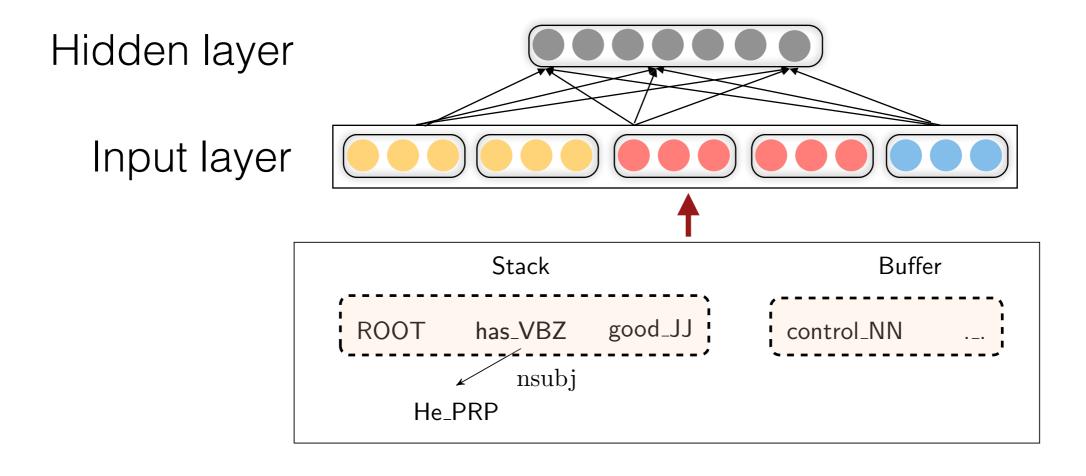
We extract a set of tokens based on the positions:



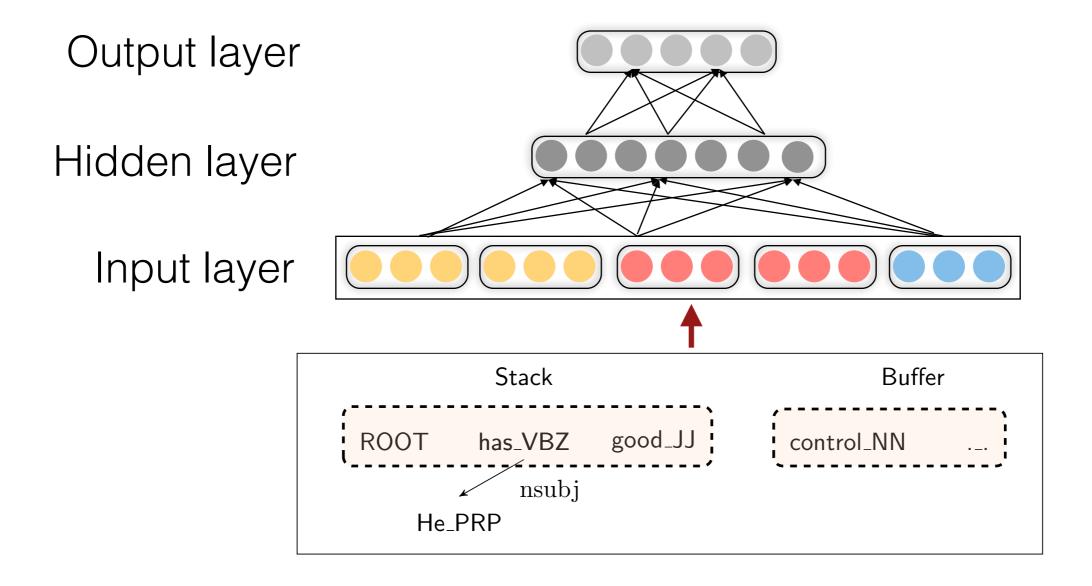




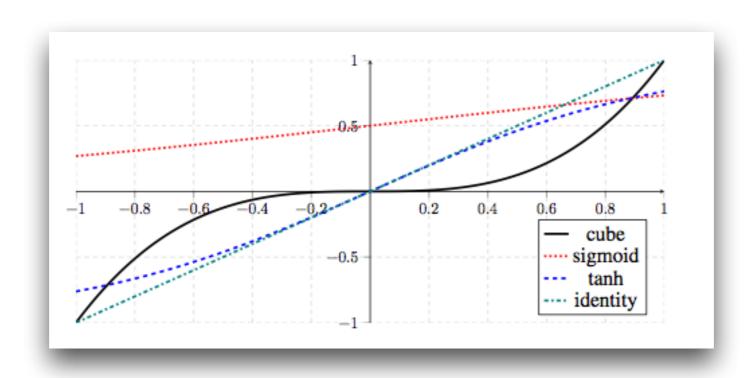
Cube activation function: $g(x) = x^3$



Softmax probabilities



Cube Activation Function



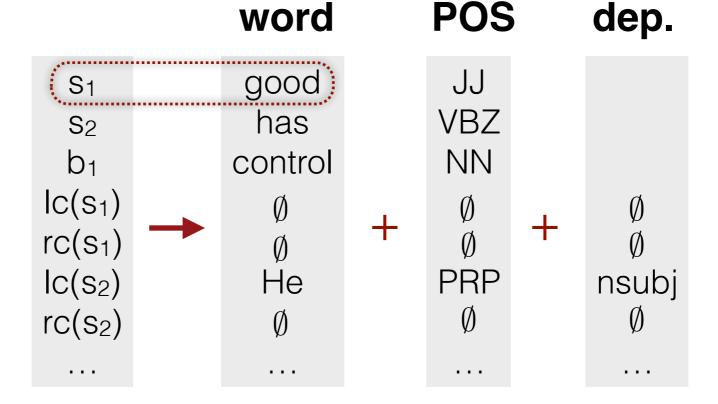
$$g(w_1x_1+\ldots+w_mx_m+b)= \ \sum_{i,j,k}(w_iw_jw_k)x_ix_jx_k+\sum_{i,j}b(w_iw_j)x_ix_j\ldots$$

Better capture the interaction terms!

- Generating training examples using a fixed oracle.
- Training objective: cross entropy loss
- Back-propagation to all embeddings.
- Initialization:
 - Word embeddings from pre-trained word vectors.
 - Random initialization for others.

Parsing Speed-up

Pre-computation trick:



- If we have seen (s₁, good) many times in training set, we can pre-compute matrix multiplications before parsing reducing multiplications to additions.
- 8 ~ 10 times faster.

Indicator vs. Dense Features

Problem #1: sparse

Distributed representations can capture similarities.

Indicator vs. Dense Features

Problem #1: sparse

Distributed representations can capture similarities.

Problem #2: incomplete

We don't need to enumerate the combinations.

Cube non-linearity can learn combinations automatically.

Indicator vs. Dense Features

Problem #1: sparse

Distributed representations can capture similarities.

Problem #2: incomplete

We don't need to enumerate the combinations.

Cube non-linearity can learn combinations automatically.

Problem #3: computationally expensive

String concatenation + look-up in a big table ⇒ matrix operations. Pre-computation trick can speed up.

Experimental Setup

Datasets

- English Penn Treebank (PTB)
- Chinese Penn Treebank (CTB)

Representations

- CoNLL representations (CD) for PTB and CTB
- Stanford Dependencies V3.3.0 (SD) for PTB

Part-of-speech tags:

- Stanford POS tagger for PTB (97.3% accuracy)
- Gold tags for CTB

Details

- Embedding size = 50
- Hidden size = 200
- Use mini-batched AdaGrad for optimization (α = 0.01)
- Use 0.5 dropout on hidden layer.
- Pre-trained word vectors:
 - C & W for English
 - Word2vec for Chinese
- We use a rich set of 18 tokens from the configuration.

Baselines

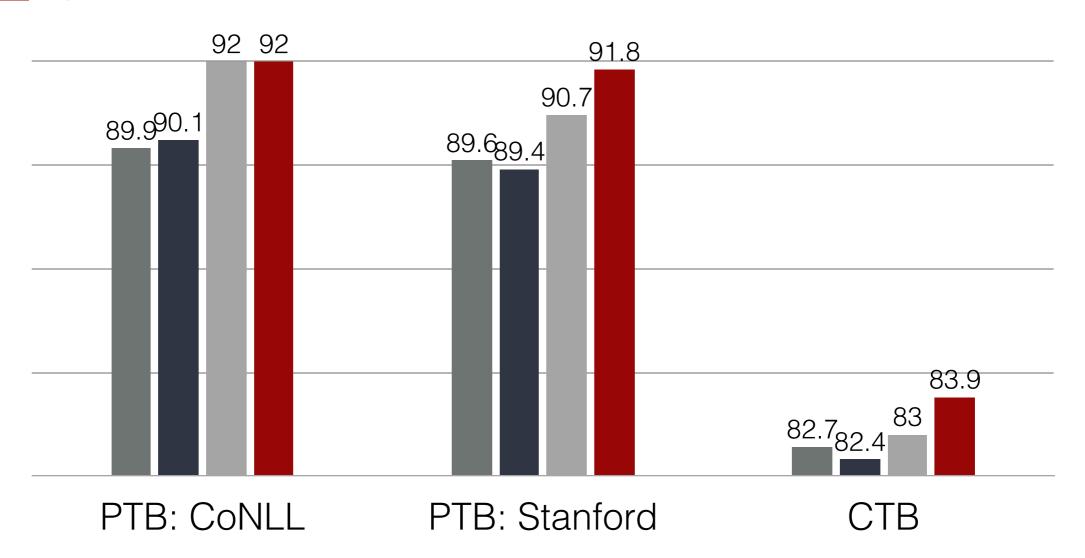
 Standard / eager: our own implemented perceptronbased greedy parsers using arc-standard or arc-eager system, with a rich feature set from (Zhang and Nivre, 2011).

MaltParser

- two algorithms stackproj and nivreeager.
- MSTParser

Unlabeled Attachment Score (UAS)

- Standard / eager
- Malt (stackproj / nirveeager)
- MST
- Our Parser



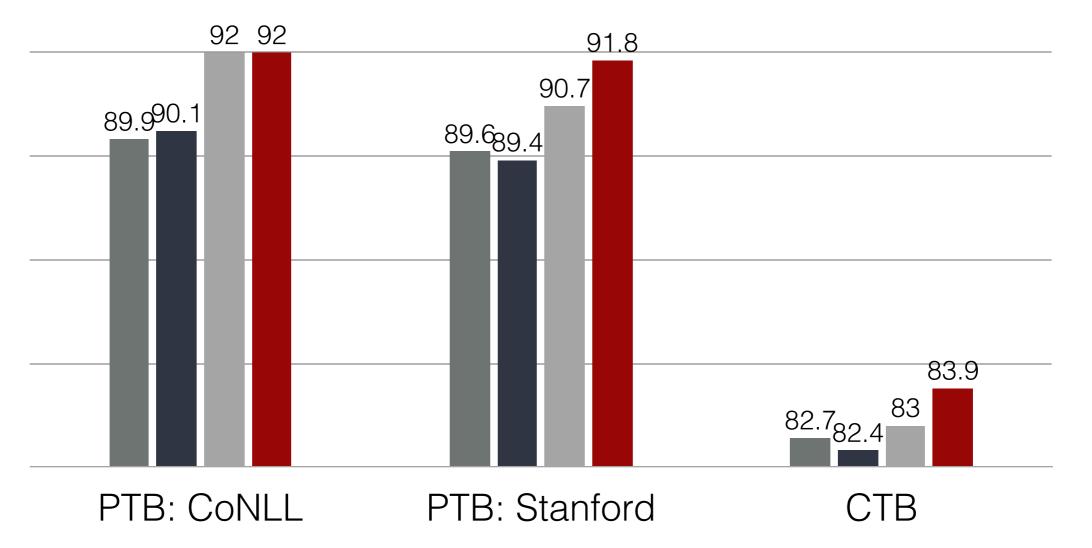
Unlabeled Attachment Score (UAS)

- Standard / eager
- Malt (stackproj / nirveeager)
- **MST**
- Our Parser

Compared with greedy parsers,

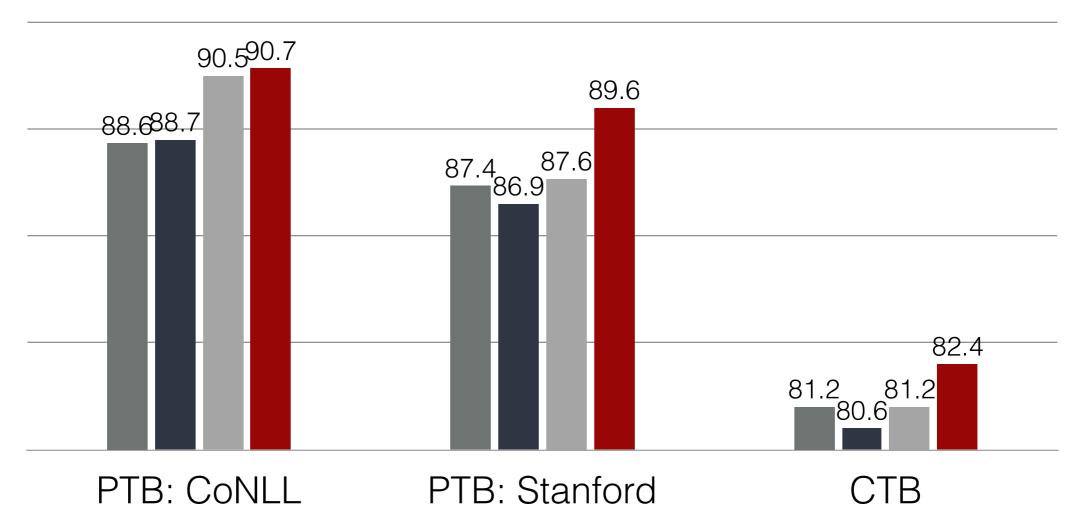
PTB: > 2.0%

CTB: >1.2%



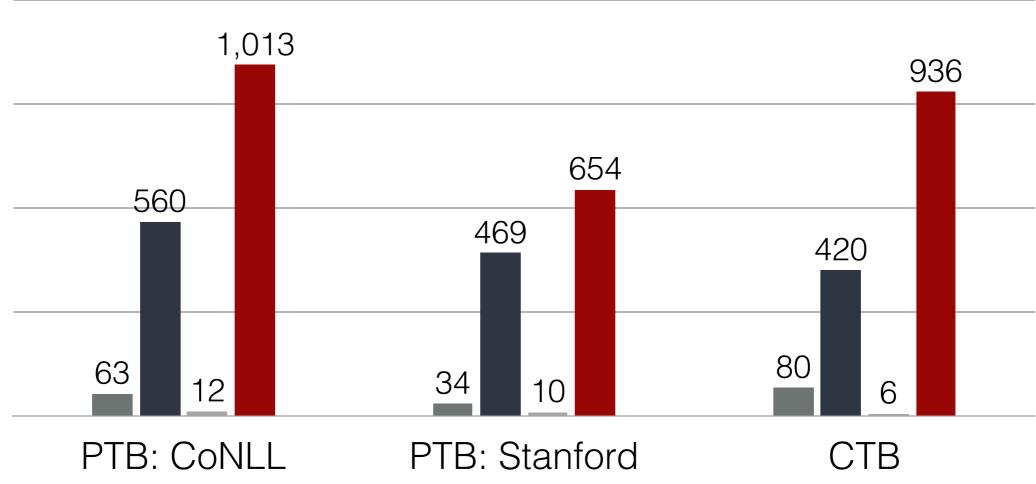
Labeled Attachment Score (LAS)

- Standard / eager
- Malt (stackproj / nirveeager)
- **MST**
- Our Parser

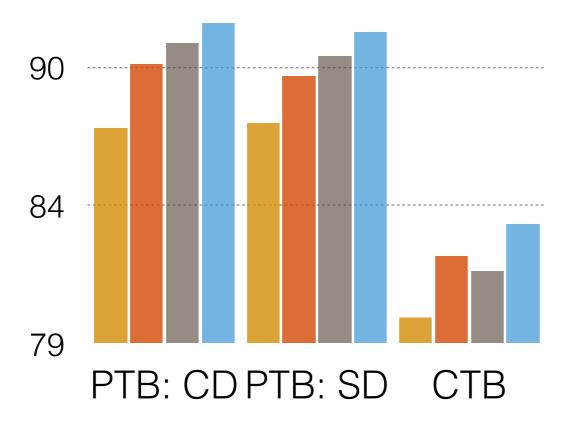


Parsing Speed (sent/s)

- Standard / eager
- Malt (stackproj / nirveeager)
- MST
- Our Parser



Cube Activation Function

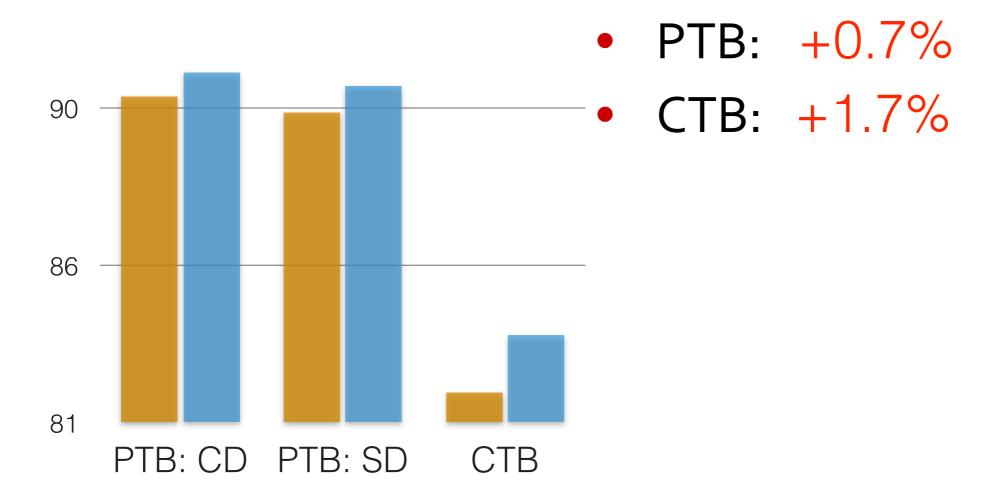


Cube: +0.8% ~ 1.2%

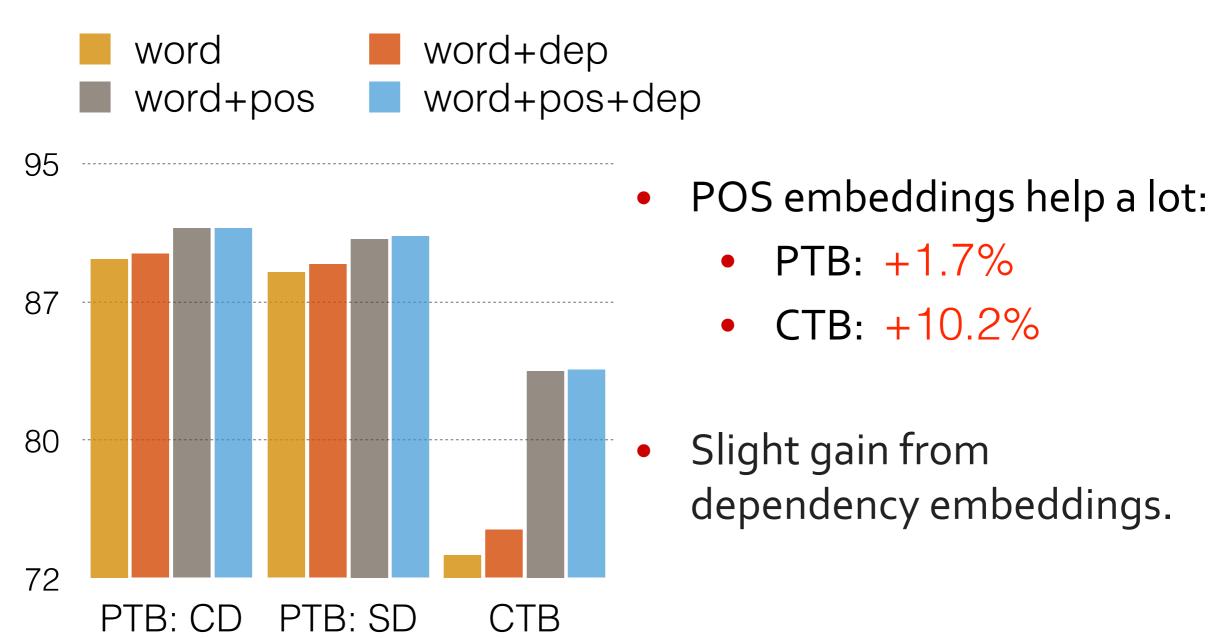
Pre-trained Word Vectors

random pre-trained

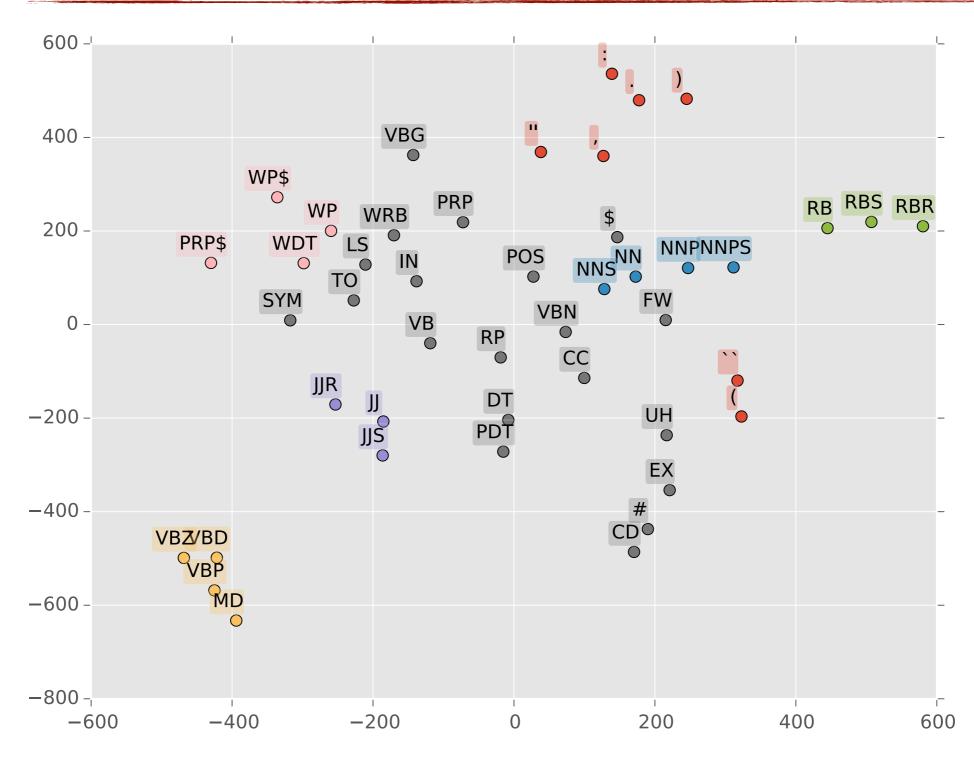
95



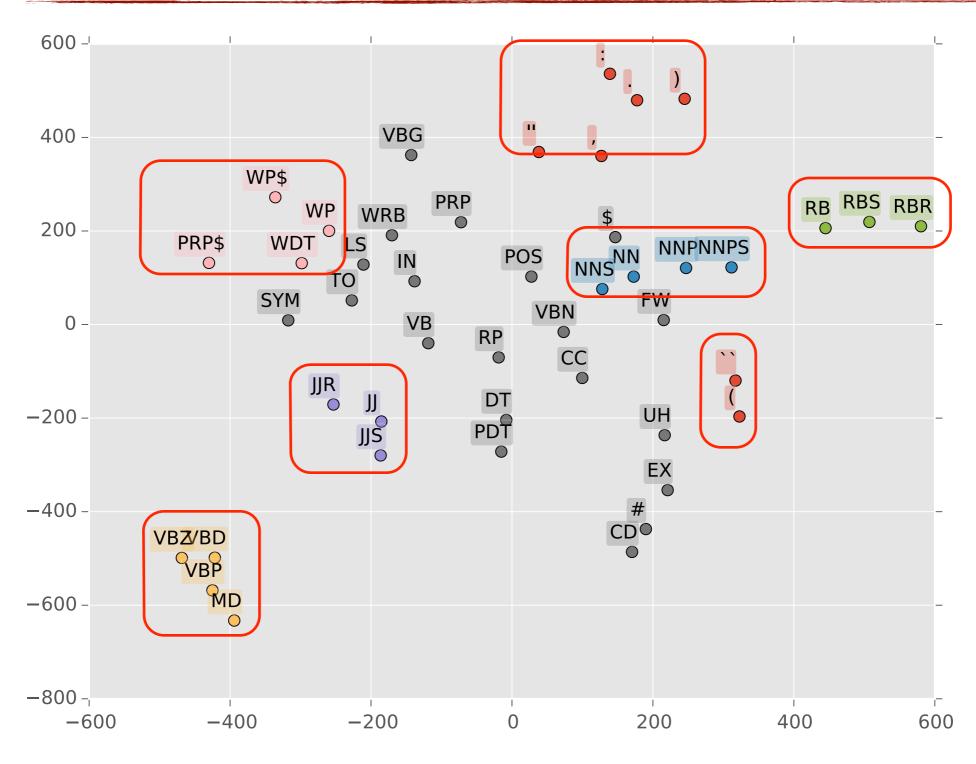
POS / Dependency Embeddings



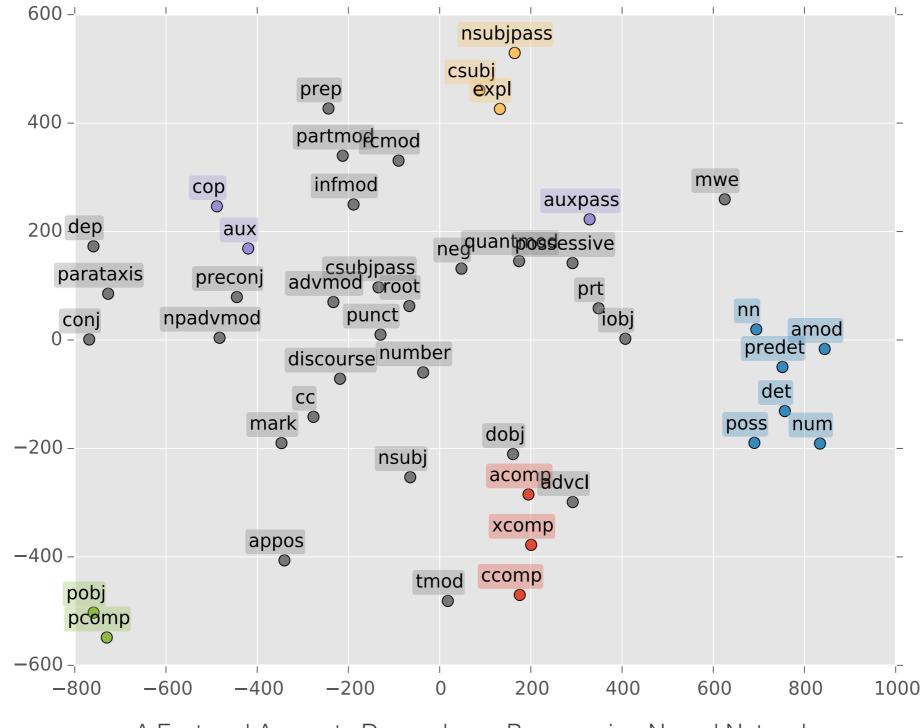
POS Embeddings



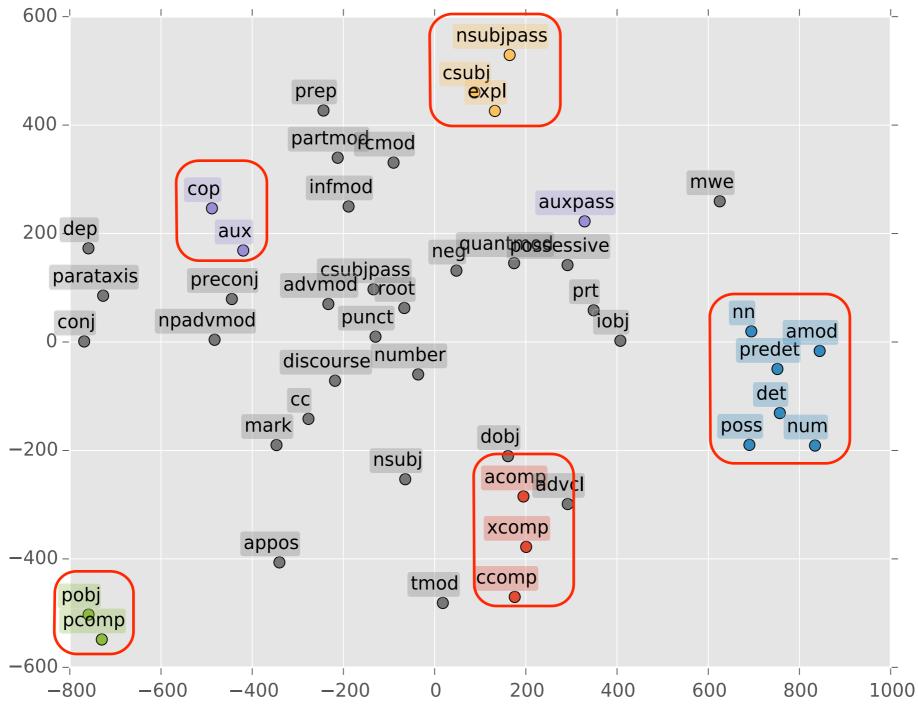
POS Embeddings



Dependency Embeddings



Dependency Embeddings



Conclusion

Summary

- Presented a state-of-the-art greedy parser using NNs.
- Excellent accuracy and speed.
- Introduced POS / dep. embeddings, and cube activation function.

Future work

- Beam search
- Dynamic oracle
- Richer features (lemma, morph, distance, etc).
- Better representation for modeling interactions

- Code is available!
- Try fast dependency parsing in Stanford CoreNLP v3.5.0,
 - annotators: tokenize,ssplit,pos,depparse
- Or check out full training / testing code at:
 - http://nlp.stanford.edu/software/nndep.shtml
- Contact: danqi@cs.stanford.edu