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Linear Classifiers

• Input is a n dimensional vector x
• Output is a label 𝑦 ∈ {−1, 1}

• Linear threshold units classify an example 𝒙 using 
the classification rule
sgn 𝑏 + 𝒘!𝒙 = sgn(𝑏 + ∑"𝑤"𝑥")
• 𝑏 + 𝒘!𝒙 ≥ 0 ) Predict y = 1
• 𝑏 + 𝒘!𝒙 < 0) Predict y = -1 
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For now



The geometry of a linear classifier
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In n dimensions,
a linear classifier 
represents a hyperplane
that separates the space 
into two half-spaces

[w1 w2]



XOR is not linearly separable
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No line can be drawn to separate the two classes



Even these functions can be made linear

The trick: Change the representation
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These points are not separable in 1-dimension by a line

What is a one-dimensional line, by the way?

Not all functions are linearly separable



Even these functions can be made linear
The trick: Use feature conjunctions
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Transform points: Represent each point x in 2 dimensions by (x, x2)

Now the data is linearly separable in this space!

Not all functions are linearly separable



Linear classifiers are an expressive hypothesis class

• Many functions are linear
– Conjunctions, disjunctions
– At least m-of-n functions

• Often a good guess for a hypothesis space
– If we know a good feature representation

• Some functions are not linear
– The XOR function
– Non-trivial Boolean functions
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We will see in the 
coming weeks that 
structured predictors 
can also be defined via 
linear functions.



The Perceptron algorithm

• Rosenblatt 1958

• The goal is to find a separating hyperplane
– For separable data, guaranteed to find one

• An online algorithm
– Processes one example at a time

• Several variants exist
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The algorithm

Given a training set 𝐷 = 𝐱" , 𝑦" where 𝐱" ∈ ℜ# , 𝑦" ∈ −1, 1

1. Initialize 𝐰 = 𝟎 ∈ ℜ#

2. For epoch in 1⋯𝑇:
1. Shuffle the data
2. For each training example 𝐱" , 𝑦" ∈ 𝐷:
• If 𝑦"𝐰$𝐱" ≤ 0, then:

– update 𝐰 ← 𝐰+ 𝑟𝑦"𝐱"
3. Return 𝐰

Prediction on a new example with features 𝐱: sgn 𝐰$𝐱
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T is a hyper-parameter to the algorithm

Another way of writing that 
there is an error



Convergence theorem 

If there exist a set of weights that are consistent with 
the data (i.e. the data is linearly separable), the 
perceptron algorithm will converge after a finite 
number of updates. 
– [Novikoff 1962]

18



Beyond the separable case

• The good news
– Perceptron makes no assumption about data distribution
– Even adversarial
– After a fixed number of mistakes, you are done. Don’t even 

need to see any more data

• The bad news: Real world is not linearly separable
– Can’t expect to never make mistakes again
– What can we do: more features, try to be linearly 

separable if you can
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Variants of the algorithm

• The original version: Return the final weight vector

• Averaged perceptron
– Returns the average weight vector from the entire training 

time (i.e longer surviving weight vectors get more say)

– Widely used 

– A practical approximation of the Voted Perceptron
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Learning as loss minimization

• Collect some annotated data. More is generally better

• Pick a hypothesis class (also called model)
– Eg: linear classifiers, deep neural networks
– Also, decide on how to impose a preference over hypotheses

• Choose a loss function
– Eg: negative log-likelihood, hinge loss
– Decide on how to penalize incorrect decisions

• Minimize the expected loss
– Eg: Set derivative to zero and solve on paper, typically a more complex 

algorithm
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Learning as loss minimization
• The setup 

– Examples x drawn from a fixed, unknown distribution D
– Hidden oracle classifier f labels examples
– We wish to find a hypothesis h that mimics f

• The ideal situation
– Define a function L that penalizes bad hypotheses
– Learning: Pick a function h 2 H to minimize expected loss

• Instead, minimize empirical loss on the training set

23

But distribution D is unknown
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Empirical loss minimization

Learning = minimize empirical loss on the training set

We need something that biases the learner towards simpler 
hypotheses
• Achieved using a regularizer, which penalizes complex 

hypotheses
• Capacity control for better generalization
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Is there a problem here? Overfitting! 



Regularized loss minimization

• Learning: min
"∈$

regularizer(w) + C %
&
∑' 𝐿(ℎ 𝑥' , 𝑦')

• With L2 regularization: min
(

%
) 𝑤

!𝑤 + 𝐶 ∑' 𝐿(𝐹 𝑥', 𝑤 , 𝑦')
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Regularized loss minimization

• Learning: min
"∈$

regularizer(w) + C %
&
∑' 𝐿(ℎ 𝑥' , 𝑦')

• With L2 regularization: min
(

%
) 𝑤

!𝑤 + 𝐶 ∑' 𝐿(𝐹 𝑥', 𝑤 , 𝑦')

• What is a loss function?
– Loss functions should penalize mistakes
– We are minimizing average loss over the training data
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How do we train in such a regime?

• Suppose we have a predictor F that maps inputs x to a 
score F(x, w) that is thresholded to get a label
– Here w are the parameters that define the function
– Say F is a differentiable function

• How do we use a labeled training set to learn the weights 
i.e. solve this minimization problem?

min
!

$
"

𝐿(𝐹 𝑥" , 𝑤 , 𝑦")

• We could compute the gradient of F and decend the 
gradient to minimize the loss
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• Suppose we have a predictor F that maps inputs x to a 
score F(x, w) that is thresholded to get a label
– Here w are the parameters that define the function
– Say F is a differentiable function
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i.e. solve this minimization problem?

min
!

$
"

𝐿(𝐹 𝑥" , 𝑤 , 𝑦")

• We could compute the gradient of the loss and descend 
along that direction to minimize
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Stochastic gradient descent

Given a training set S = 𝐱𝑖, 𝑦𝑖 , 𝐱 ∈ ℜ#

1. Initialize parameters w
2. For epoch = 1 … T:

1. Shuffle the training set
2. For each training example 𝐱𝑖, 𝑦𝑖 ∈ S:

• Treat this example as the entire dataset 
Compute the gradient of the loss 𝛻𝐿(𝑁𝑁 𝒙!, 𝒘 , 𝑦!)

• Update: 𝒘 ← 𝒘− 𝛾"𝛻𝐿(𝑁𝑁 𝒙!, 𝒘 , 𝑦!))

3. Return w
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𝛾!: learning rate, 
many tweaks possible

The objective is not convex. 
Initialization can be important
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A more general form

Suppose we want to minimize a function that is the sum of 
other functions

𝑓 𝑥 =$
"$%

&

𝑓"(𝑥)

• Initialize 𝑥
• Loop till convergence:

– Pick 𝑖 randomly from {1, 2,⋯ , 𝑛}
– Update 𝑥 ← 𝑥 − 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 ⋅ 𝛻𝑓"(𝑥)

• Return 𝑥
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In practice…

• There are many variants of this idea

• Several named learning algorithms
– AdaGrad, AdaDelta, RMSProp, Adam

• But the key components are the same. We need to…
1. …sample a tiny subset of the data at each step 
2. …compute the gradient of the loss using this subset
3. …take a step in the negative direction of the gradient
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Standard loss functions

We need to think about the problem we have at hand

Is it a…
1. Binary classification problem?
2. Regression problem?
3. Multi-class classification problem?
4. Or something else?

Each case is naturally paired with a different loss function
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The ideal case for binary classification: 
The 0-1 loss

Penalize classification mistakes between true label y and prediction y’ 

𝐿!"#(𝑦, 𝑦$) = -1 if 𝑦 ≠ 𝑦$,
0 if 𝑦 = 𝑦$.

More generally, suppose we have a prediction function of the form 
sgn(𝐹(𝑥, 𝑤))

– Note that F need not be linear

𝐿!"#(𝑦, 𝑦$) = -1 if 𝑦𝐹 𝑥,𝑤 ≤ 0,
0 if 𝑦𝐹 𝑥,𝑤 > 0.

Minimizing 0-1 loss is intractable. Need surrogates
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Margin

The margin of a hyperplane for a dataset is the distance between 
the hyperplane and the data point nearest to it.
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Learning strategy

Find the linear separator that maximizes the margin

52



Maximizing margin and minimizing loss

53

Maximize margin Penalty for the prediction: 
The Hinge loss

Find the linear separator that maximizes the margin



Binary to multiclass

• Can we use an algorithm for training binary classifiers 
to construct a multiclass classifier?
– Answer: Decompose the prediction into multiple binary 

decisions

• How to decompose?
– One-vs-all
– All-vs-all
– Error correcting codes

10



General setting

• Input 𝐱 ∈ ℜ!
– The inputs are represented by their feature vectors

• Output 𝐲 ∈ 1,2,⋯ ,𝐾
– These classes represent domain-specific labels

• Learning: Given a dataset 𝐷 = {(𝐱𝑖, 𝐲𝑖)}
– Need a learning algorithm that uses D to construct a function that can 

predict 𝐱 to 𝐲
– Goal: find a predictor that does well on the training data and has low 

generalization error

• Prediction/Inference: Given an example 𝐱 and the learned 
function, compute the class label for 𝐱
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1. One-vs-all classification

• Assumption: Each class individually separable from 
all the others

• Learning: Given a dataset 𝐷 = {(𝐱𝑖, 𝐲𝑖)}
– Decompose into K binary classification tasks
– For class k, construct a binary classification task as:

• Positive examples: Elements of D with label k
• Negative examples: All other elements of D

– Train K binary classifiers w1, w2, ! wK using any learning 
algorithm we have seen

12
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1. One-vs-all classification

• Assumption: Each class individually separable from 
all the others

• Learning: Given a dataset 𝐷 = {(𝐱i, 𝐲𝑖)}
– Train K binary classifiers w1, w2, ! wK using any learning 

algorithm we have seen

• Prediction: “Winner Takes All”
argmax𝑖 𝐰𝑖

𝑇𝐱
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𝒙 ∈ ℜ!
𝒚 ∈ 1,2,⋯ , 𝐾

Question: What is the 
dimensionality of each wi?



Visualizing One-vs-all
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Visualizing One-vs-all

From the full dataset, construct three 
binary classifiers, one for each class
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Visualizing One-vs-all

From the full dataset, construct three 
binary classifiers, one for each class
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wblue
Tx > 0 

for blue 
circle inputs

wred
Tx > 0 for 

red triangle 
inputs

wgreen
Tx > 0 for 

green square 
inputs

Notation: Score 
for blue label

Winner Take All will predict the right answer. Only the 
correct label will have a positive score



One-vs-all may not always work
Black points are not separable with a single binary 
classifier

The decomposition will not work for these cases!

wblue
Tx > 0 

for blue
circle inputs

wred
Tx > 0 for 

red triangle 
inputs

wgreen
Tx > 0 for 

green square 
inputs

???
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One-vs-all classification: Summary

• Easy to learn
– Use any binary classifier learning algorithm

• Problems
– No theoretical justification
– Calibration issues

• We are comparing scores produced by K classifiers trained 
independently. No reason for the scores to be in the same 
numerical range!

– Might not always work
• Yet, works fairly well in many cases, especially if the underlying 

binary classifiers are tuned, regularized
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2. All-vs-all classification

• Assumption: Every pair of classes is separable

Sometimes called one-vs-one

25



2. All-vs-all classification

• Assumption: Every pair of classes is separable

• Learning: Given a dataset 𝐷 = {(𝐱𝒊, 𝐲𝑖)}, 
– For every pair of labels (j, k), create a binary classifier with:

• Positive examples: All examples with label j
• Negative examples: All examples with label k

– Train  𝐾2 = -(-/0)
2

classifiers to separate every pair of 

labels from each other

Sometimes called one-vs-one

26
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2. All-vs-all classification

• Assumption: Every pair of classes is separable

• Learning: Given a dataset 𝐷 = {(𝐱𝒊, 𝐲𝑖)}, 
– Train  𝐾2 = -(-/0)

2 classifiers to separate every pair of 
labels from each other

• Prediction: More complex, each label get K-1 votes
– How to combine the votes? Many methods

• Majority: Pick the label with maximum votes
• Organize a tournament between the labels

Sometimes called one-vs-one
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All-vs-all classification

• Every pair of labels is linearly separable here
– When a pair of labels is considered, all others are ignored

• Problems
1. O(K2) weight vectors to train and store

2. Size of training set for a pair of labels could be very small, 
leading to overfitting of the binary classifiers

3. Prediction is often ad-hoc and might be unstable
Eg: What if two classes get the same number of votes? For a tournament, 
what is the sequence in which the labels compete?
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3. Error correcting output codes (ECOC)

• Each binary classifier provides one bit of information

• With K labels, we only need log2K bits to represent the 
label
– One-vs-all uses K bits (one per classifier)
– All-vs-all uses O(K2) bits

• Can we get by with O(log K) classifiers?
– Yes! Encode each label as a binary string
– Or alternatively, if we do train more than O(log K) classifiers, can 

we use the redundancy to improve classification accuracy?
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Using log2K classifiers

• Learning:
– Represent each label by a bit string (i.e., its code)
– Train one binary classifier for each bit

• Prediction:
– Use the predictions from all the classifiers to create a log2K bit 

string that uniquely decides the output

• What could go wrong here?
– Even if one of the classifiers makes a mistake, final prediction is 

wrong!

30

label# Code

0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

8 classes, code-length = 3

Example: For some example, if the three  classifiers predict 
0, 1 and 1, then the label is 3 
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Error correcting output coding

Answer: Use redundancy 
• Assign a binary string with each label 

– Could be random
– Length of the code word L >= log2K is a parameter

• Train one binary classifier for each bit
– Effectively, split the data into random dichotomies
– We need only log2K bits

• Additional bits act as an error correcting code

33

8 classes, code-length = 5

# Code

0 0 0 0 0 0

1 0 0 1 1 0

2 0 1 0 1 1

3 0 1 1 0 1

4 1 0 0 1 1

5 1 0 1 0 0

6 1 1 0 0 0

7 1 1 1 1 1



How to predict?

• Prediction
– Run all L binary classifiers on the example
– Gives us a predicted bit string of length L
– Output = label whose code word is “closest” to

the prediction
– Closest defined using Hamming distance

• Longer code length is better, better error-correction

• Example
– Suppose the binary classifiers here predict 11010
– The closest label to this is 6, with code word 11000

34

8 classes, code-length = 5

# Code

0 0 0 0 0 0

1 0 0 1 1 0

2 0 1 0 1 1

3 0 1 1 0 1

4 1 0 0 1 1

5 1 0 1 0 0

6 1 1 0 0 0

7 1 1 1 1 1



How to predict?

• Prediction
– Run all L binary classifiers on the example
– Gives us a predicted bit string of length L
– Output = label whose code word is “closest” to

the prediction
– Closest defined using Hamming distance

• Longer code length is better, better error-correction

• Example
– Suppose the binary classifiers here predict 11010
– The closest label to this is 6, with code word 11000
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8 classes, code-length = 5

# Code

0 0 0 0 0 0

1 0 0 1 1 0

2 0 1 0 1 1

3 0 1 1 0 1

4 1 0 0 1 1

5 1 0 1 0 0

6 1 1 0 0 0

7 1 1 1 1 1

One-vs-all is a special case 
of this scheme. How?



Error correcting codes: Discussion

• Assumes that columns are independent
– Otherwise, ineffective encoding

• Strong theoretical results that depend on code length
– If minimal Hamming distance between two rows is 𝑑, then the 

prediction can correct up to #$%
&

errors in the binary predictions

• Code assignment could be random, or designed for the 
dataset or task

• One-vs-all and all-vs-all are special cases
– All-vs-all needs a ternary code (not binary)
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Decomposition methods: Summary

• General idea
– Decompose the multiclass problem into many binary problems
– We know how to train binary classifiers
– Prediction depends on the decomposition

• Constructs the multiclass label from the output of the binary classifiers

• Learning optimizes local correctness
– Each binary classifier does not need to be globally correct

• That is, the classifiers do not have to agree with each other
– The learning algorithm is not aware of the prediction procedure!

• Poor decomposition gives poor performance
– Difficult local problems, can be “unnatural”

• Eg. For ECOC, why should the binary problems be separable?
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1

Modeling Structures



What we have seen: Training multiclass 
classifiers

• Label belongs to a set that has more than two elements

• Methods
– Decomposition into a collection of binary (local) decisions

• One-vs-all
• All-vs-all
• Error correcting codes

– Training a single (global) classifier
 

• Constraint classification

3



Recipe for multiclass classification

– Collect a training set (hopefully with correct labels)

– Define feature representations for inputs (𝒙 ∈ ℜ!)
And, 𝐲 ∈ {𝑏𝑜𝑜𝑘, 𝑑𝑜𝑔, 𝑝𝑒𝑛𝑔𝑢𝑖𝑛}

– Define linear functions to score labels
argmax

𝐲∈{%&&', )&*, +,!*-.!}
𝐰𝐲
0𝐱

Natural extension to non-linear scoring functions too 
argmax

𝐲∈{$%%&, (%), *+,)-.,}
score(𝐱, 𝐲)

6



Recipe for multiclass classification

7

• Train weights so that it scores examples correctly
e.g., for an input of type 𝑏𝑜𝑜𝑘, we want

score(𝐱, 𝑏𝑜𝑜𝑘) > score(𝐱, 𝑝𝑒𝑛𝑔𝑢𝑖𝑛)
score(𝐱, 𝑏𝑜𝑜𝑘) > score(𝐱, 𝑑𝑜𝑔)

• Prediction: argmax
𝐲∈{899:, ;9<, =>?<@A?}

score(𝐱, 𝐲)

– Easy to predict
– Iterate over the output list, find the highest scoring one



Recipe for multiclass classification

• Train weights so that it scores examples correctly
e.g., for an input of type 𝑏𝑜𝑜𝑘, we want

score(𝐱, 𝑏𝑜𝑜𝑘) > score(𝐱, 𝑝𝑒𝑛𝑔𝑢𝑖𝑛)
score(𝐱, 𝑏𝑜𝑜𝑘) > score(𝐱, 𝑑𝑜𝑔)

• Prediction: argmax
𝐲∈{899:, ;9<, =>?<@A?}

score(𝐱, 𝐲)

– Easy to predict
– Iterate over the output list, find the highest scoring one

8

What if the space of outputs is much larger? 
Say trees, or in general, graphs. Let’s look at examples.



Example 1: Information extraction

Predicting entities and relations from text

9

Colin went back home to Ordon Village.

Entities can be Person, Location, Organization, None

Directed edges between them can be Kill, LiveIn, WorkFor, LocatedAt,
OrgBasedIn, None



Example 1: Information extraction

Predicting entities and relations from text

10

Colin went back home to Ordon Village.

Colin is a Person
Ordon Village is a Location

Colin → OrdonVillage: LiveIn

Ordon Village → Colin None

Prediction: a structure



Structured prediction…

… requires an exploration of the combinatorial space of 
possible outputs to find the best one

11

Colin is a Location
Ordon Village is a Organization

Colin → OrdonVillage: LiveIn

Ordon Village → Colin LiveIn

Colin is a Person
Ordon Village is a Organization

Colin → OrdonVillage: WorkFor

Ordon Village → Colin LiveIn

Colin is a Organization
Ordon Village is a Person

Colin → OrdonVillage: Kill

Ordon Village → Colin WorkFor

Colin is a Person
Ordon Village is a Person

Colin is a Person
Ordon Village is a Person

Colin is a Person
Ordon Village is a Location

Colin → OrdonVillage: LiveIn

Ordon Village → Colin None

✓

✗

✗

✗

✗ ✗



Example 2: Semantic Role Labeling

The task: Given a sentence, identify who does what to 
whom, where and when.

12

The bus was heading for Nairobi in Kenya



Example 2: Semantic Role Labeling

The task: Given a sentence, identify who does what to 
whom, where and when.

13

The bus was heading for Nairobi in Kenya

Relation: to head
Mover[A0]: the bus

Destination[A1]: Nairobi in Kenya



Example 2: Semantic Role Labeling

The task: Given a sentence, identify who does what to 
whom, where and when.

14

The bus was heading for Nairobi in Kenya

Relation: to head
Mover[A0]: the bus

Destination[A1]: Nairobi in Kenya

Predicate

Arguments



Predicting verb arguments

15

The bus was heading for Nairobi in Kenya.



Predicting verb arguments

1. Identify candidate arguments 
for verb using parse tree
– Filtered using a binary classifier

2. Classify argument candidates
– Multi-class classifier (one of 

multiple labels per candidate)

3. Inference
– Using probability estimates from 

argument classifier
– Must respect structural and 

linguistic constraints
• Eg: The same word can not be 

part of two arguments

The bus was heading for Nairobi in Kenya.

16



Predicting verb arguments

1. Identify candidate arguments 
for verb using parse tree
– Filtered using a binary classifier

2. Classify argument candidates
– Multi-class classifier (one of 

multiple labels per candidate)

3. Inference
– Using probability estimates from 

argument classifier
– Must respect structural and 

linguistic constraints
• Eg: The same word can not be 

part of two arguments

The bus was heading for Nairobi in Kenya.

17

Each color is a different label here



Predicting verb arguments

1. Identify candidate arguments 
for verb using parse tree
– Filtered using a binary classifier

2. Classify argument candidates
– Multi-class classifier (one of 

multiple labels per candidate)

3. Inference
– Using probability estimates from 

argument classifier
– Must respect structural and 

linguistic constraints
• Eg: The same word can not be 

part of two arguments

The bus was heading for Nairobi in Kenya.

18



Inference: verb arguments
The bus was heading for Nairobi in Kenya.

Special label, meaning 
“Not an argument”

19

Suppose we are assigning 
colors to each span



Inference: verb arguments
The bus was heading for Nairobi in Kenya.
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Inference: verb arguments
The bus was heading for Nairobi in Kenya.
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Inference: verb arguments
The bus was heading for Nairobi in Kenya.

Total: 2.0
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22

heading (The bus, 
for Nairobi, 
for Nairobi in Kenya)

Special label, meaning 
“Not an argument”



Inference: verb arguments
The bus was heading for Nairobi in Kenya.

Violates constraint: 
Overlapping argument!

Total: 2.0
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heading (The bus, 
for Nairobi, 
for Nairobi in Kenya)

Special label, meaning 
“Not an argument”



Inference: verb arguments
The bus was heading for Nairobi in Kenya.

Total: 1.9
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heading (The bus, 
for Nairobi in Kenya)

Total: 2.0

Special label, meaning 
“Not an argument”



Inference: verb arguments
The bus was heading for Nairobi in Kenya.

0.4

0.1

0.1

0.1

0.3

Input Text with pre-processing

Output Five possible decisions for each candidate 
Create a binary variable for each decision, only one of which is 
true for each candidate. Collectively, a “structure”

25

heading (The bus, 
for Nairobi in Kenya)

(                      )



Structured output is…

• A data structure with a pre-defined schema
– Eg: SRL converts raw text into a record in a database

• Equivalently, a graph
– Often restricted to be a specific family of graphs: chains, trees, etc

26

Predicate A0 A1 Location

Head The bus Nairobi in Kenya -

Head

The bus Nairobi in Kenya

A0 A1

Questions/comments?



Example 3: Object detection

27
Photo by Andrew Dressel - Own work. Licensed under Creative Commons Attribution-Share Alike 3.0



Example 3: Object detection

28
Photo by Andrew Dressel - Own work. Licensed under Creative Commons Attribution-Share Alike 3.0

Right facing bicycle



Example 3: Object detection

29
Photo by Andrew Dressel - Own work. Licensed under Creative Commons Attribution-Share Alike 3.0

left wheel
right wheel

handle barsaddle/seat

Right facing bicycle



The output: A schematic showing the parts
and their relative layout

30

left wheel
right wheel

handle barsaddle/seat

Once again, a structure

Right facing bicycle



Object detection

31
Photo by Andrew Dressel - Own work. Licensed under Creative Commons Attribution-Share Alike 3.0

left wheel
right wheel

handle barsaddle/seat

Right facing bicycle

How would you design a predictor that labels all the parts 
using the tools we have seen so far?



One approach to build this structure

32Photo by Andrew Dressel - Own work. Licensed under Creative Commons Attribution-Share Alike 3.0

Left wheel detector: Is there a wheel in this box? Binary classifier



One approach to build this structure

33Photo by Andrew Dressel - Own work. Licensed under Creative Commons Attribution-Share Alike 3.0

Handle bar detector: Is there a handle bar in this box? Binary classifier



One approach to build this structure

34Photo by Andrew Dressel - Own work. Licensed under Creative Commons Attribution-Share Alike 3.0

2. Right 
wheel 
detector

1. Left 
wheel 
detector

3. Handle 
bar detector

4. Seat 
detector



One approach to build this structure

35Photo by Andrew Dressel - Own work. Licensed under Creative Commons Attribution-Share Alike 3.0

2. Right 
wheel 
detector

1. Left 
wheel 
detector

3. Handle 
bar detector

4. Seat 
detector

Final output: Combine the predictions of these 
individual classifiers (local classifiers)

The predictions interact with each other

Eg: The same box can not be both a left wheel and a 
right wheel, handle bar does not overlap with seat,…

Need inference to construct the output



Example 4: Sequence labeling

• Input: A sequence of tokens (like words)
• Output: A sequence of labels of same length as input

Eg: Part-of-speech tagging: 

Given a sentence, find parts-of-speech of all the words

36

The

Determiner

Fed

Noun

raises

Verb

interest

Noun

rates

Noun

Verb 
(I fed the dog)

Verb
(Poems don’t interest me)

Verb
(He rates movies online)

Other possible 
tags in different 
contexts,

More on this in next lecture
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Example 4: Sequence labeling

• Input: A sequence of tokens (like words)
• Output: A sequence of labels of same length as input

Eg: Part-of-speech tagging: 

Given a sentence, find parts-of-speech of all the words

39

The Fed raises interest rates

Verb 
(I fed the dog)

Verb
(Poems don’t interest me)

Verb
(He rates movies online)Other labels are 

possible in 
different contexts

     

Determiner Noun Verb Noun Noun



Part-of-speech tagging

Given a word, its label depends on :
– The identity and characteristics of the word

– Its grammatical context

40

E.g. Raises is a Verb because it ends in –es (among other reasons) 

• Fed in “The Fed” is a Noun because it follows a Determiner

• Fed in “I fed the..” is a Verb because it follows a Pronoun



Part-of-speech tagging

Given a word, its label depends on :
– The identity and characteristics of the word
– Its grammatical context

41

Each output label is dependent on its neighbors in addition to the input word
One possible modeling assumption:



Part-of-speech tagging

Given a word, its label depends on :
– The identity and characteristics of the word
– Its grammatical context

42

Each output label is dependent on its neighbors in addition to the input word
One possible modeling assumption:

Two kinds of scoring functions for labels
1. Score for label associating with a particular word in context
2. Score for a pair of labels following each other 



Part-of-speech tagging

Given a word, its label depends on :
– The identity and characteristics of the word
– Its grammatical context

43

Each output label is dependent on its neighbors in addition to the input word
One possible modeling assumption:

Two kinds of scoring functions for labels
1. Score for label associating with a particular word in context
2. Score for a pair of labels following each other 

What we want: Find a sequence of labels that maximizes the sum/product of these scores



More examples

Protein 3D structure prediction

Inferring layout of a room

44Image from [Schwing et al 2013]



Structured output is…
• A graph, possibly labeled and/or directed

– Possibly from a restricted family, such as chains, trees, etc.
– A discrete representation of input
– Eg. A table, the SRL frame output, a sequence of labels etc

• A collection of inter-dependent decisions
– Eg: The sequence of decisions used to construct the output

• The result of a combinatorial optimization problem
argmax

𝐲∈ #$$ %&'(&')
𝑠𝑐𝑜𝑟𝑒(𝐱, 𝐲)

45



Structured output is…
• A graph, possibly labeled and/or directed

– Possibly from a restricted family, such as chains, trees, etc.
– A discrete representation of input
– Eg. A table, the SRL frame output, a sequence of labels etc

• A collection of inter-dependent decisions
– Eg: The sequence of decisions used to construct the output

• The result of a combinatorial optimization problem
argmax

𝐲∈ #$$ %&'(&')
𝑠𝑐𝑜𝑟𝑒(𝐱, 𝐲)

We have seen 
something similar 
before in the context 
of multiclass

46

Representation

Procedural



Structured output is…
• A graph, possibly labeled and/or directed

– Possibly from a restricted family, such as chains, trees, etc.
– A discrete representation of input
– Eg. A table, the SRL frame output, a sequence of labels etc

• A collection of inter-dependent decisions
– Eg: The sequence of decisions used to construct the output

• The result of a combinatorial optimization problem
argmax

𝐲∈ #$$ %&'(&')
𝑠𝑐𝑜𝑟𝑒(𝐱, 𝐲)

We have seen 
something similar 
before in the context 
of multiclass

47

Representation

Procedural

There are a countable number of graphs
Question: Why can’t we treat each output as a 
label and train/predict as multiclass?



Challenges with structured output

Two challenges
1. We cannot train a separate weight vector for each possible 

inference outcome
• For multiclass, we could train one weight vector for each label 

2. We cannot enumerate all possible structures for inference
• Inference for multiclass was easy

• Solution
– Decompose the output into parts that are labeled
– Define 

• how the parts interact with each other
• how these labeled interacting parts are scored
• an inference algorithm to assign labels to all the parts

48



Challenges with structured output

Two challenges
1. We cannot train a separate weight vector for each possible 

inference outcome
• For multiclass, we could train one weight vector for each label 

2. We cannot enumerate all possible structures for inference
• Inference for multiclass was easy

Solution
– Decompose the output into parts that are labeled
– Define 

• how the parts interact with each other
• how these labeled interacting parts are scored
• an inference algorithm to assign labels to all the parts so that the 

whole is meaningful

49



Computational issues

71

Background 
knowledge about 

domain



Computational issues
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Model definition
What are the parts of the output? 
What are the inter-dependencies?

Background 
knowledge about 

domain
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knowledge about 
domain



Computational issues
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What are the inter-dependencies?

How to train the 
model? How to do inference?

Background 
knowledge about 

domain
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Data annotation 
difficulty

Background 
knowledge about 

domain



Computational issues

76

Model definition
What are the parts of the output? 
What are the inter-dependencies?

How to train the 
model? How to do inference?

Data annotation 
difficulty

Background 
knowledge about 

domain

Semi-
supervised/indirectly 

supervised?



Summary

• We saw several examples of structured output 
– Structures are graphs

• Sometimes useful to think of them as a sequence of decisions
• Also useful to think of them as data structures

• Multiclass is the simplest type of structure
– Lessons from multiclass are useful

• Modeling outputs as structures
– Decomposition of the output, inference, training

77



  

Predicting Sequences:
Global Models

1



Global models

• Train the predictor globally
– Instead of training local decisions independently

• Normalize globally
– Make each edge in the model undirected
– Not associated with a probability, but just a “score”

• Recall the difference between local vs. global for 
multiclass

4



HMM vs. A local model vs. A global model

5

yt-1 yt

xt

yt-1 yt

xt
HMM Conditional

model

yt-1 yt

xt
Global
model

P(yt | yt-1)

P(xt | yt)

P(yt | yt-1, xt) fT(yt, yt-1)

fE(yt, xt)

Local: P is locally 
normalized to add up 
to one for each t

Global: The functions fT
and fE are scores that 
are not normalized

Generative Discriminative
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Conditional Random Field

8

y0 y1 y2 y3

x

Each node is a random variable

We observe some nodes and the rest are unobserved



Conditional Random Field

9

y0 y1 y2 y3

x

Each node is a random variable

We observe some nodes and the rest are unobserved

For example: 
• x could be a random variable representing an input video, 
• the y’s could represent whether the corresponding time step is at the start, end, or 

within a scene.



Conditional Random Field

10

y0 y1 y2 y3

x

Each node is a random variable

We observe some nodes and the rest are unobserved

The goal: To characterize a probability distribution over the unobserved 
variables, conditioned on the observed ones. 

That is, to characterize 𝑃 𝑦!, 𝑦", ⋯ 𝐱 .



Scoring assignments to outputs

11

y0 y1 y2 y3

x

Each node is a random variable
We observe some nodes and 
the rest are unobserved

The strategy: Each clique is associated with a score



Scoring assignments to outputs
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y0 y1 y2 y3

x

𝐬𝐜𝐨𝐫𝐞(𝒙, 𝑦0, 𝑦1)

The strategy: Each clique is associated with a score



Scoring assignments to outputs
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y0 y1 y2 y3

x

𝐬𝐜𝐨𝐫𝐞(𝒙, 𝑦0, 𝑦1) 𝐬𝐜𝐨𝐫𝐞(𝒙, 𝑦1, 𝑦!)

The strategy: Each clique is associated with a score



Scoring assignments to outputs
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y0 y1 y2 y3

x

𝐬𝐜𝐨𝐫𝐞(𝒙, 𝑦0, 𝑦1) 𝐬𝐜𝐨𝐫𝐞(𝒙, 𝑦1, 𝑦!) 𝐬𝐜𝐨𝐫𝐞(𝒙, 𝑦2, 𝑦3)

The strategy: Each clique is associated with a score



Scoring assignments to outputs

15

y0 y1 y2 y3

x

𝐬𝐜𝐨𝐫𝐞(𝒙, 𝑦0, 𝑦1)
= 𝐰"𝜙(𝑥, 𝑦#, 𝑦$)

𝐬𝐜𝐨𝐫𝐞(𝒙, 𝑦1, 𝑦!)
= 𝐰"𝜙(𝑥, 𝑦$, 𝑦!)

𝐬𝐜𝐨𝐫𝐞(𝒙, 𝑦2, 𝑦3)
= 𝐰"𝜙(𝑥, 𝑦!, 𝑦%)

The strategy: Each clique is associated with a score

The usual scoring function: A linear function of 
weights and features of the associated nodes



Scoring assignments to outputs

16

y0 y1 y2 y3

x

𝐰"𝜙(𝑥, 𝑦#, 𝑦$) 𝐰"𝜙(𝑥, 𝑦$, 𝑦!) 𝐰"𝜙(𝑥, 𝑦!, 𝑦%)

Each node is a random variable

We observe some nodes and need to assign the rest

Each clique is associated with a score, typically linear

Arbitrary features, as with 
local conditional models



Another notation: A factor graph
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Each node is a random variable

We observe some nodes and need to assign the rest

Each clique is associated with a score

y0 y1 y2 y3

x

𝒘𝑇𝜙(𝒙, 𝑦0, 𝑦1) 𝒘𝑇𝜙(𝒙, 𝑦1, 𝑦2) 𝒘𝑇𝜙(𝒙, 𝑦2, 𝑦3)

Factors

factor



Notation: A factor graph

• A bipartite graph consisting of two kinds of nodes
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Notation: A factor graph

• A bipartite graph consisting of two kinds of nodes
– Random variables (usually circles) represent decisions

19

y0 y1 y2 y3

x

Random variables



Notation: A factor graph

• A bipartite graph consisting of two kinds of nodes
– Random variables (usually circles) represent decisions
– Factors (usually squares) represent interactions

20

y0 y1 y2 y3

x

Factors



Notation: A factor graph

• A bipartite graph consisting of two kinds of nodes
– Random variables (usually circles) represent decisions
– Factors (usually squares) represent interactions
– Edges: Random variables that interact with each other (think parts)

21

y0 y1 y2 y3

x



Notation: A factor graph

• A bipartite graph consisting of two kinds of nodes
– Random variables (usually circles) represent decisions
– Factors (usually squares) represent interactions

• Semantics: All random variables that are connected to a factor 
are scored together. That is, each factor corresponds to a 
score.

22

y0 y1 y2 y3

x

𝒘𝑇𝜙(𝒙, 𝑦0, 𝑦1) 𝒘𝑇𝜙(𝒙, 𝑦1, 𝑦2) 𝒘𝑇𝜙(𝒙, 𝑦2, 𝑦3)



Scoring assignments to outputs
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y0 y1 y2 y3

x

𝐰"𝜙(𝑥, 𝑦#, 𝑦$) 𝐰"𝜙(𝑥, 𝑦$, 𝑦!) 𝐰"𝜙(𝑥, 𝑦!, 𝑦%)

Each node is a random variable

We observe some nodes and need to assign the rest

Each clique is associated with a score, typically linear

Arbitrary features, as with 
local conditional models



Scoring with factor graphs
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Each node is a random variable

We observe some nodes and need to assign the rest

Each clique is associated with a score
factor

y0 y1 y2 y3

x

𝒘𝑇𝜙(𝒙, 𝑦0, 𝑦1) 𝒘𝑇𝜙(𝒙, 𝑦$, 𝑦2) 𝒘𝑇𝜙(𝒙, 𝑦2, 𝑦3)



Scoring with factor graphs
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y0 y1 y2 y3

x

A different factorization: Recall decomposition of structures into parts. Same idea

Each node is a random variable

We observe some nodes and need to assign the rest

Each factor is associated with a score



Scoring with factor graphs
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wT𝜙(y0, y1) wT𝜙( y1, y2) wT𝜙(y2, y3)

A different factorization: Recall decomposition of structures into parts. Same idea

Each node is a random variable

We observe some nodes and need to assign the rest

Each factor is associated with a score

y0 y1 y2 y3

x



Scoring with factor graphs
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wT𝜙(y0, y1) wT𝜙( y1, y2) wT𝜙(y2, y3)wT𝜙(y0, x) wT𝜙( y1, x) wT𝜙( y2, x) wT𝜙( y3, x)

A different factorization: Recall decomposition of structures into parts. Same idea

Each node is a random variable

We observe some nodes and need to assign the rest

Each factor is associated with a score

y0 y1 y2 y3

x



From scores to a probability

28

Recall our goal: To characterize a probability distribution over the 
unobserved variables, conditioned on the observed ones. 

That is, to characterize 𝑃 𝑦!, 𝑦", ⋯ 𝐱 .

y0 y1 y2 y3

x

𝒘𝑇𝜙(𝒙, 𝑦0, 𝑦1) 𝒘𝑇𝜙(𝒙, 𝑦$, 𝑦2) 𝒘𝑇𝜙(𝒙, 𝑦2, 𝑦3)



From scores to a probability
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𝑃 𝐲 ∣ 𝐱 ∝ *
#∈%&'()*+

exp score 𝑓𝑎𝑐𝑡𝑜𝑟

y0 y1 y2 y3

x

𝒘𝑇𝜙(𝒙, 𝑦0, 𝑦1) 𝒘𝑇𝜙(𝒙, 𝑦$, 𝑦2) 𝒘𝑇𝜙(𝒙, 𝑦2, 𝑦3)



From scores to a probability
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𝑃 𝐲 ∣ 𝐱 ∝*
,

exp 𝑤-𝜙 𝐱, 𝑦,.", 𝑦,

y0 y1 y2 y3

x

𝒘𝑇𝜙(𝒙, 𝑦0, 𝑦1) 𝒘𝑇𝜙(𝒙, 𝑦$, 𝑦2) 𝒘𝑇𝜙(𝒙, 𝑦2, 𝑦3)



From scores to a probability
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𝑃 𝐲 ∣ 𝐱 =
1

𝑍 𝐱
*
,

exp 𝑤-𝜙 𝐱, 𝑦,.", 𝑦,

y0 y1 y2 y3

x

𝒘𝑇𝜙(𝒙, 𝑦0, 𝑦1) 𝒘𝑇𝜙(𝒙, 𝑦$, 𝑦2) 𝒘𝑇𝜙(𝒙, 𝑦2, 𝑦3)

To get a probability, we need to normalize this using a term 𝑍 𝐱 that ensures 
that the probabilities add up to one.



From scores to a probability
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𝑃 𝐲 ∣ 𝐱 =
1

𝑍 𝐱
*
,

exp 𝑤-𝜙 𝐱, 𝑦,.", 𝑦,

y0 y1 y2 y3

x

𝒘𝑇𝜙(𝒙, 𝑦0, 𝑦1) 𝒘𝑇𝜙(𝒙, 𝑦$, 𝑦2) 𝒘𝑇𝜙(𝒙, 𝑦2, 𝑦3)

To get a probability, we need to normalize this using a term 𝑍 𝐱 that ensures 
that the probabilities add up to one.

𝑍 𝐱 =2
&'

3
(

exp 𝑤"𝜙(𝑥, 𝑦()$, 𝑦(

Called the 
partition 
function



Conditional Random Fields
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𝑃 𝐲 ∣ 𝐱 =
1

𝑍 𝐱
*
,

exp 𝑤-𝜙 𝐱, 𝑦,.", 𝑦,

y0 y1 y2 y3

x

𝒘𝑇𝜙(𝒙, 𝑦0, 𝑦1) 𝒘𝑇𝜙(𝒙, 𝑦$, 𝑦2) 𝒘𝑇𝜙(𝒙, 𝑦2, 𝑦3)

The conditional probability of the labels given the input is a 
product of normalized factor scores.

Such models are called conditional random fields.



CRF: A different view

• Input: x, Output: y, sequence (for now)

• Define a feature vector for the entire input and output sequence: Φ 𝐱, 𝐲

• Define a giant log-linear model, P(y | x) parameterized by w

𝑃 𝐲 𝐱 =
1
𝑍*

,

exp 𝐰-𝜙 𝒙, 𝑦,, 𝑦,." ∝ exp 𝐰-@
,

𝜙(𝒙, 𝑦,, 𝑦,.")

– Just like any other log-linear model, except
• Space of y is the set of all possible sequences of the correct length
• Normalization constant sums over all sequences

34

In an MEMM, probabilities were locally normalized

𝑃 𝒚 𝒙 =
1
𝑍
3
(

exp(𝒘"𝜙(𝒙, 𝑦( , 𝑦()$) ∝ exp 𝑤"2
(

𝜙(𝒙, 𝑦( , 𝑦()$)



CRF: A different view

• Input: x, Output: y, sequence (for now)

• Define a feature vector for the entire input and output sequence: Φ 𝐱, 𝐲

• Define a giant log-linear model, P(y | x) parameterized by w

𝑃 𝐲 𝐱 =
1
𝑍*

,

exp 𝐰-𝜙 𝒙, 𝑦,, 𝑦,." ∝ exp 𝐰-@
,

𝜙(𝒙, 𝑦,, 𝑦,.")

– Just like any other log-linear model, except
• Space of y is the set of all possible sequences of the correct length
• Normalization constant sums over all sequences
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In an MEMM, probabilities were locally normalized



CRF: A different view

• Input: x, Output: y, sequence (for now)

• Define a feature vector for the entire input and output sequence: Φ 𝐱, 𝐲

• Define a giant log-linear model, P(y | x) parameterized by w

𝑃 𝐲 𝐱 =
1
𝑍*

,

exp 𝐰-𝜙 𝒙, 𝑦,, 𝑦,." ∝ exp 𝐰-@
,

𝜙(𝒙, 𝑦,, 𝑦,.")

– Just like any other log-linear model, except
• Space of y is the set of all possible sequences of the correct length
• Normalization constant sums over all sequences

36

In an MEMM, probabilities were locally normalized



Global features

The feature function decomposes over the factors in sequence 
(that is, the factor graph)

Φ 𝐱, 𝐲 =&
<

𝜙(𝑥, 𝑦<=>, 𝑦<)

37

y0 y1 y2 y3

x

𝐰𝑇𝜙(𝒙, 𝑦0, 𝑦1) 𝐰𝑇𝜙(𝒙, 𝑦$, 𝑦2) 𝐰𝑇𝜙(𝒙, 𝑦2, 𝑦3)



Where are we?

• We have seen how a CRF assigns probabilities to 
sequences
– Global normalization instead of local normalization
– Avoid the label bias problem because of this

• Next:
– How to predict the most probable sequence 
– How to train the scoring functions

38



Goal: To predict most probable sequence y for an input x
argmax

𝐲
𝑃 𝐲 𝐱 = argmax

𝐲
exp 𝐰-Φ(𝐱, 𝐲)

= argmax
0

𝐰-Φ 𝐱, 𝐲

But the score decomposes as 𝐰?Φ 𝐱, 𝐲 = ∑<𝐰?𝜙(x, 𝑦<=>, 𝑦<)

Prediction via Viterbi (with sum instead of product)
1. Base case: score@ s = 𝐰A𝜙 𝐱, start, 𝑦@
2. Recursive case: 

scoreB s = max
C!"#

𝑤?𝜙 𝑥, 𝑦<=>, 𝑦< + score<=>(𝑦<=> )

Prediction
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Goal: To predict most probable sequence y for an input x
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scoreB s = max
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𝑤?𝜙 𝑥, 𝑦<=>, 𝑦< + score<=>(𝑦<=> )

Prediction
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Goal: To predict most probable sequence y for an input x
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𝐲
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Prediction
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Goal: To predict most probable sequence y for an input x
argmax

𝐲
𝑃 𝐲 𝐱 = argmax

𝐲
exp 𝐰-Φ(𝐱, 𝐲)

= argmax
0

𝐰-Φ 𝐱, 𝐲

But the score decomposes as 𝐰?Φ 𝐱, 𝐲 = ∑<𝐰?𝜙(x, 𝑦<=>, 𝑦<)

Prediction via Viterbi (with sum instead of product)
1. Base case: score@ s = 𝐰A𝜙 𝐱, start, 𝑦@
2. Recursive case: 

scoreB s = max
C!"#

𝐰?𝜙 𝐱, 𝑦<=>, 𝑦< + score<=>(𝑦<=> )

Prediction
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Training a chain CRF

• Input: 
– Dataset with labeled sequences, D = {<xi, yi>}
– A definition of the feature function 

• How do we train?
– Maximize the (regularized) log-likelihood

44

Recall: Empirical loss minimization



Training with inference

• Many methods for training
– Numerical optimization
– Can use a gradient or hessian based method

• Simple gradient ascent

• Training involves inference! 
– A different kind than what we have seen so far 
– Summing over all sequences is just like Viterbi

• With summation instead of maximization

45



Training with inference

• Many methods for training
– Numerical optimization
– Can use a gradient or hessian based method

• Simple gradient ascent

• Training involves inference! 
– A different kind than what we have seen so far 
– Summing over all sequences is just like Viterbi

• With summation instead of maximization

46



CRF (for sequences): Summary

• An undirected graphical model
– Decompose the score over the structure into a collection of factors
– Each factor assigns a score to assignment of the random variables it is 

connected to

• Training and prediction
– Final prediction via argmax wT𝜙(x, y)
– Train by maximum (regularized) likelihood

• Relation to other models
– Effectively a linear classifier
– A generalization of logistic regression to structures
– An instance of Markov Random Field, with some random variables 

observed
• We will see this soon

47



	 	

Predicting	Sequences:
Structured	Perceptron

1



Conditional	Random	Fields	summary

• An	undirected	graphical	model
– Decompose	the	score	over	the	structure	into	a	collection	of	factors
– Each	factor	assigns	a	score	to	assignment	of	the	random	variables	it	is	

connected	to

• Training	and	prediction
– Final	prediction	via	argmax wTÁ(x,	y)
– Train	by	maximum	(regularized)	likelihood

• Connections	to	other	models
– Effectively	a	linear	classifier
– A	generalization	of	logistic	regression	to	structures
– An	conditional	variant	of	a	Markov	Random	Field

• We	will	see	this	soon

2



Global features

The	feature	function	decomposes	over	the	sequence

3

y0 y1 y2 y3

x

𝒘𝑇𝜙(𝒙, 𝑦0, 𝑦1) 𝒘𝑇𝜙(𝒙, 𝑦+, 𝑦2) 𝒘𝑇𝜙(𝒙, 𝑦2, 𝑦3)



Outline

• Sequence	models

• Hidden	Markov	models

– Inference	with	HMM
– Learning

• Conditional	Models	and	Local	Classifiers

• Global	models
– Conditional	Random	Fields

– Structured	Perceptron	for	sequences

4



HMM	is	also	a	linear	classifier
Consider	the	HMM:	

𝑃 𝐱, 𝐲 =2𝑃 𝑦3 𝑦34+ 𝑃 𝑥3 𝑦3

�

3

5



HMM	is	also	a	linear	classifier
Consider	the	HMM:	

𝑃 𝐱, 𝐲 =2𝑃 𝑦3 𝑦34+ 𝑃 𝑥3 𝑦3

�

3

6

EmissionsTransitions



HMM	is	also	a	linear	classifier
Consider	the	HMM:	

𝑃 𝐱, 𝐲 =2𝑃 𝑦3 𝑦34+ 𝑃 𝑥3 𝑦3

�

3
Or	equivalently

log 𝑃 𝐱, 𝐲 =:log𝑃 𝑦3 ∣ 𝑦34+	 + log 𝑃 𝑥3 ∣ 𝑦3	
�

3

7

Log	joint	probability	=	transition	scores	+	emission	scores



HMM	is	also	a	linear	classifier

log 𝑃 𝐱, 𝐲 =:log𝑃 𝑦3 ∣ 𝑦34+	 + log 𝑃 𝑥3 ∣ 𝑦3	
�

3

Let	us	examine	this	expression	using	a	carefully	defined	set	of	
indicator	functions
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Log	joint	probability	=	transition	scores	+	emission	scores



HMM	is	also	a	linear	classifier

log 𝑃 𝐱, 𝐲 =:log𝑃 𝑦3 ∣ 𝑦34+	 + log 𝑃 𝑥3 ∣ 𝑦3	
�

3

Let	us	examine	this	expression	using	a	carefully	defined	set	of	
indicator	functions

𝐼 ? = @1,	 𝑧	is	true,
0, 𝑧	is	false.

9

Log	joint	probability	=	transition	scores	+	emission	scores

Indicators	are	functions	that	map	Booleans	to	0	or	1



HMM	is	also	a	linear	classifier

log 𝑃 𝐱, 𝐲 =:log𝑃 𝑦3 ∣ 𝑦34+	 + log 𝑃 𝑥3 ∣ 𝑦3	
�

3

Let	us	examine	this	expression	using	a	carefully	defined	set	of	
indicator	functions

::log𝑃 𝑠 𝑠L ⋅ 𝐼 NOPQ ⋅
�

QR

�

Q

𝐼[NOTUVWR]

10

Log	joint	probability	=	transition	scores	+	emission	scores

The	indicators	ensure	that	only	
one	of	the	elements	of	the	
double	summation	is	non-zero

Equivalent	to	



HMM	is	also	a	linear	classifier

log 𝑃 𝐱, 𝐲 =:log𝑃 𝑦3 ∣ 𝑦34+	 + log 𝑃 𝑥3 ∣ 𝑦3	
�

3

Let	us	examine	this	expression	using	a	carefully	defined	set	of	
indicator	functions

:log𝑃 𝑥3 𝑠 ⋅ 𝐼 NOPQ

�

Q

11

Log	joint	probability	=	transition	scores	+	emission	scores

The	indicators	ensure	that	only	
one	of	the	elements	of	the	
summation	is	non-zero

Equivalent	to	



HMM	is	also	a	linear	classifier

log 𝑃 𝐱, 𝐲 =:log𝑃 𝑦3 ∣ 𝑦34+	 + log 𝑃 𝑥3 ∣ 𝑦3	
�

3
Let	us	examine	this	expression	using	a	carefully	defined	set	of	
indicator	functions

log 𝑃 𝐱, 𝐲 =:::log𝑃 𝑠 𝑠L ⋅ 𝐼 NOPQ ⋅
�

QR

�

Q

𝐼[NOTUVWR]	
�

3

												

+::log𝑃 𝑥3 𝑠 ⋅ 𝐼 NOPQ

�

Q

�

3
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HMM	is	also	a	linear	classifier

log 𝑃 𝐱, 𝐲 =:log𝑃 𝑦3 ∣ 𝑦34+	 + log 𝑃 𝑥3 ∣ 𝑦3	
�

3
Let	us	examine	this	expression	using	a	carefully	defined	set	of	
indicator	functions

log 𝑃 𝐱, 𝐲 =:::log𝑃 𝑠 𝑠L ⋅ 𝐼 NOPQ ⋅
�

QR

�

Q

𝐼[NOTUVWR]	
�

3

												

+::log𝑃 𝑥3 𝑠 ⋅ 𝐼 NOPQ

�

Q

�

3

	

log 𝑃 𝐱, 𝐲 =::log𝑃(𝑠 ∣ 𝑠L):𝐼 NOPQ

�

3

�

QR
𝐼[NOTUVWR]	

�

Q

												

+:log𝑃 𝑥3 𝑠 :𝐼 NOPQ

�

3

�

Q
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HMM	is	also	a	linear	classifier

log 𝑃 𝐱, 𝐲 =:log𝑃 𝑦3 ∣ 𝑦34+	 + log 𝑃 𝑥3 ∣ 𝑦3	
�

3
Let	us	examine	this	expression	using	a	carefully	defined	set	of	
indicator	functions

log 𝑃 𝐱, 𝐲 =::log𝑃 𝑠 𝑠L :𝐼 NOPQ

�

3

�

QR
𝐼[NOTUVWR]	

�

Q

												

+:log𝑃 𝑥3 𝑠 :𝐼 NOPQ

�

3

�

Q

14

Number	of	times	
there	is	a	transition	in	
the	sequence	from	
state	𝑠’ to	state	𝑠

Count(𝑠L → 𝑠)



HMM	is	also	a	linear	classifier

log 𝑃 𝐱, 𝐲 =:log𝑃 𝑦3 ∣ 𝑦34+	 + log 𝑃 𝑥3 ∣ 𝑦3	
�

3
Let	us	examine	this	expression	using	a	carefully	defined	set	of	
indicator	functions

log 𝑃 𝐱, 𝐲 =::log𝑃 𝑠 𝑠L ⋅ Count(𝑠L → 𝑠)
�

QR

�

Q
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HMM	is	also	a	linear	classifier

log 𝑃 𝐱, 𝐲 =:log𝑃 𝑦3 ∣ 𝑦34+	 + log 𝑃 𝑥3 ∣ 𝑦3	
�

3
Let	us	examine	this	expression	using	a	carefully	defined	set	of	
indicator	functions

log 𝑃 𝐱, 𝐲 =::log𝑃 𝑠 𝑠L ⋅ Count(𝑠L → 𝑠)
�

QR

�

Q

											

+:log𝑃 𝑥3 𝑠 :𝐼 NOPQ

�

3

�

Q

16

Number	of	times	state	
𝑠 occurs	in	the	
sequence:	Count(𝑠)
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This	is	a	linear	function
log	P	terms	are	the	weights;	counts	via	indicators	are	features
Can	be	written	as	wTÁ(x,	y)	and	add	more	features



HMM	is	a	linear	classifier:	An	example
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The ate thedog homework

Det Verb DetNoun Noun
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Towards	structured	Perceptron

1. HMM	is	a	linear	classifier
– Can	we	treat	it	as	any	linear	classifier	for	training?
– If	so,	we	could	add	additional	features	that	are	global	properties

• As	long	as	the	output	can	be	decomposed	for	easy	inference

2. The	Viterbi	algorithm	calculates	max	wTÁ(x,	y)
Viterbi	only	cares	about	scores	to	structures	(not	necessarily	normalized)

3. We	could	push	the	learning	algorithm	to	train	for	un-normalized	
scores
– If	we	need	normalization,	we	could	always	normalize	by	computing	

exponentiating and	dividing	by	Z
– That	is,	the	learning	algorithm	can	effectively	just	focus	on	the	score	of	y	

for	a	particular	x
– Train	a	discriminative	model!

28
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Towards	structured	Perceptron

1. HMM	is	a	linear	classifier
– Can	we	treat	it	as	any	linear	classifier	for	training?
– If	so,	we	could	add	additional	features	that	are	global	properties

• As	long	as	the	output	can	be	decomposed	for	easy	inference

2. The	Viterbi	algorithm	calculates	max	wTÁ(x,	y)
Viterbi	only	cares	about	scores	to	structures	(not	necessarily	normalized)

3. We	could	push	the	learning	algorithm	to	train	for	un-normalized	
scores
– If	we	need	normalization,	we	could	always	normalize	by	exponentiating

and	dividing	by	Z	(the	partition	function)
– That	is,	the	learning	algorithm	can	effectively	just	focus	on	the	score	of	y	

for	a	particular	x
– Train	a	discriminative	model	instead	of	the	generative	one!
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Structured	Perceptron	algorithm

Given	a	training	set	D	=	{(x,y)}
1. Initialize	w =	0	2 <n

2. For	epoch	=	1	…	T:
1. For	each	training	example	(x,	y)	2 D:

1. Predict y’ =	argmaxy’ wTÁ(x,	y’)
2. If	y ≠ y’,	update	wÃ w +	learningRate (Á(x,	y)	- Á(x,	y’))

3. Return	w

Prediction:	argmaxywTÁ(x,	y)

31

Structured	Perceptron	update
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Update	only	on	an	error.	
Perceptron	is	an	mistake-
driven	algorithm.
If	there	is	a	mistake,	promote	
y and	demote	y’



Structured	Perceptron	algorithm

Given	a	training	set	D	=	{(x,y)}
1. Initialize	w =	0	2 <n
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T	is	a	hyperparameter to	the	algorithm
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In	practice,	good	to	
shuffle	D	before	the	
inner	loop



Structured	Perceptron	algorithm

Given	a	training	set	D	=	{(x,y)}
1. Initialize	w =	0	2 <n
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1. Predict y’ =	argmaxy’ wTÁ(x,	y’)
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Inference	in	training	loop!



Notes	on	structured	perceptron

• Mistake	bound	for	separable	data,	just	like	perceptron

• In	practice,	use	averaging	for	better	generalization
– Initialize	a =	0
– After	each	step,	whether	there	is	an	update	or	not,	aÃ w +	a

• Note,	we	still	check	for	mistake	using	w not	a
– Return	a	at	the	end	instead	of w	

Exercise:	Optimize	this	for	performance	– modify	a only	on	errors

• Global	update
– One	weight	vector	for	entire	sequence	

• Not	for	each	position
– Same	algorithm	can	be	derived	via	constraint	classification

• Create	a	binary	classification	data	set	and	run	perceptron
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Structured	Perceptron	with	averaging

Given	a	training	set	D	=	{(x,y)}
1. Initialize	w =	0	2 <n,	a =	0	2 <n

2. For	epoch	=	1	…	T:
1. For	each	training	example	(x,	y)	2 D:

1. Predict y’ =	argmaxy’ wTÁ(x,	y’)
2. If	y ≠ y’,	update	wÃ w +	r	(Á(x,	y)	- Á(x,	y’))
3. Set	aÃ a +	w

3. Return	a
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CRF	vs.	structured	perceptron

Stochastic	gradient	descent	update	for	CRF
– For	a	training	example	(xi,	yi)

Structured	perceptron
– For	a	training	example	(xi,	yi)

39

Caveat:	Adding	regularization	will	change	the	CRF	update,	averaging	changes	
the	perceptron	update

Expectation	vs max



Sequence	models:	Summary

• Goal:	Predict	an	output	sequence	given	input	sequence

• Hidden	Markov	Model

• Inference
– Predict	via	Viterbi	algorithm

• Conditional	models/discriminative	models
– Local	approaches	(no	inference	during	training)

• MEMM,	conditional	Markov	model
– Global	approaches (inference	during	training)

• CRF,	structured	perceptron

• To	think
– What	are	the	parts	in	a	sequence	model?
– How	is	each	model	scoring	these	parts?

47

Same	dichotomy	for	
more	general	structures

Prediction	is	not	always	tractable	
for	general	structures
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