Recurrent Neural Networks —
under the hood

James Pustejovsky
CS 114B
March 31, 2023

2. Language Modeling

e Language Modeling is the task of predicting what word comes next
books

the students opened their // laptops
\\ exams

minds
* More formally: given a sequence of words AN N A0S

compute the probability distribution of the next word xt+l) .
t+1 t 1
Pzt £® . gW)

(t+1)

where @ can be any word in the vocabulary V' = {’wh eey ’w|V|}

e A system that does this is called a Language Model

Language Modeling

* You can also think of a Language Model as a system that
assigns a probability to a piece of text

« For example, if we have some text (1) ... 2(T), then the
probability of this text (according to the Language Model) is:

PxW,. . 1) =PaxW) x P(®| ™) x ... x P(xD| D, . W)

T
= H P(xW| £t-D . 2W)
t=1

\ J
Y

This is what our LM provides

10

You use Language Models every day!

e I'll meet you at the © >

airport

You use Language Models every day!

12

Go

what is the weather

what is the meaning of life
what is the dark web

what is the xfl

what is the doomsday clock
what is the weather today
what is the keto diet

what is the american dream
what is the speed of light
what is the bill of rights

what is the |

Google Search

gle

I'm Feeling Lucky

(=

n-gram Language Models

the students opened their

* Question: How to learn a Language Model?
* Answer (pre- Deep Learning): learn an n-gram Language Modell

e Definition: An n-gram is a chunk of n consecutive words.

e unigrams: “the”, “students”, “opened”, "their”

e bigrams: “the students”, “students opened”, “opened their”
e trigrams: “the students opened”, “students opened their”

e four-grams: “the students opened their”

* ldea: Collect statistics about how frequent different n-grams are and use these to
predict next word.

13

n-gram Language Models

* First we make a Markov assumption: x&+1) depends only on the preceding n-1 words

n-1 words
A
[\

Pz D)g® M) = Pt |g® L gtmnt2) (assumption)

prob of a n-gram \ P(m(t—i-l)7 w(t), . ’w(t—n—l-2))

iy el SLA (definition of
> (w yoooyL) conditiona| prOb)

prob of a (n-1)-gram

* Question: How do we get these n-gram and (n-1)-gram probabilities?
* Answer: By counting them in some large corpus of text!

count (T, g . glt=nt2) (statistical
count(x®), ... xt-—n+2)) approximation)

Y

14

n-gram Language Models: Example

Suppose we are learning a 4-gram Language Model.

-as-hhe-prem-!ed-ﬂreebek—thestudents opened the/r

discard

condltlon on this

count(students opened their w)

P(w|students opened their) =
(w] P) count(students opened their)

For example, suppose that in the corpus:

e “students opened their” occurred 1000 times

* “students opened their books” occurred 400 times
* => P(books | students opened their) =0.4 Should we have discarded

« “students opened their exams” occurred 100 times the “proctor” context?

* = P(exams | students opened their) =

15

Sparsity Problems with n-gram Language Models

16

Sparsity Problem 1

opened their w” never

probability O!

Problem: What if “students

occurred in data? Then w has

(Partial) Solution: Add small §
to the count for everyw € V.
This is called smoothing.

\ 4

\

count(students opened their w
P(w|students opened their) = (p)

\

- j{count(students opened their)

Sparsity Problem 2

Problem: What if “students
opened their” never occurred in
data? Then we can’t calculate
probability for any w!

(Partial) Solution: Just condition
on “opened their” instead.
This is called backoff.

4

Note: Increasing n makes sparsity problems worse.
Typically, we can’t have n bigger than 5.

Storage Problems with n-gram Language Models

17

Storage: Need to store
count for all n-grams you
saw in the corpus.

T

count(students opened their w)

P(wlstudents opened their) =

count(students opened their)

Increasing n or increasing
corpus increases model size!

n-gram Language Models in practice

18

You can build a simple trigram Language Model over a
1.7 million word corpus (Reuters) in a few seconds on your laptop*

today the

Business and financial news

get probability

distribution
company |0.153 _ Sparsity problem:
bank @.153 not much granularity
price 0.077 in the probabilit
italian 0.839 o p‘b ALY
emirate 0.039 Istribution
Otherwise, seems reasonable! * Try for yourself: https://nlpforhackers.io/language-models/

https://nlpforhackers.io/language-models/

Generating text with a n-gram Language Model

You can also use a Language Model to generate text

today the
\\)
Y
CondltIOn get probability
on thlS distribution

company ©.153
bank 9.153
“price 0.077 |
italian 0.039
emirate 0.039

hampm

19

Generating text with a n-gram Language Model

You can also use a Language Model to generate text

20

today the price
Y J
Cond ition get probability
on thlS distribution
of 0.308 Jsample
for 0.050
it 0.046
to 0.046
is 0.031

Generating text with a n-gram Language Model

You can also use a Language Model to generate text

today the price of
——
COndltlon get probability

on this distribution
the 0.072
18 0.043
0il 0.043
its 9.036
|gold 0.018 | sample

21

Generating text with a n-gram Language Model

You can also use a Language Model to generate text

today the price of gold per ton , while production of shoe
lasts and shoe industry , the bank intervened just after it
considered and rejected an imf demand to rebuild depleted
european stocks , sept 30 end primary 76 cts a share .

Surprisingly grammatical!

...but incoherent. We need to consider more than
three words at a time if we want to model language well.

But increasing n worsens sparsity problem,
and increases model size...

Elman’s Simple RNN

N N
__/ \—_/

Simple recurrent neural network after Elman (1990). The hidden layer includes
a recurrent connection as part of its input. That is, the activation value of the hidden layer
depends on the current input as well as the activation value of the hidden layer from the
previous time step.

Explaining the Figure

* As with ordinary feedforward networks, an input vector representing the
current input, x_t, is multiplied by a weight matrix and then passed
through a non-linear activation function to compute the values for a layer
of hidden units. This hidden layer is then used to calculate a cor output,

y_t.

* In a departure from our earlier window-based approach, sequences are
processed by presenting one item at a time to the network. We'll use
subscripts to represent time, thus x_t will mean the input vector x at time
t.

* The key difference from a feedforward network lies in the recurrent link
shown in the figure with the dashed line. This link augments the input to
the computation at the hidden layer with the value of the hidden layer
from the preceding point in time.

RNN as a standard FFN

¢ hi.q) ¢ Xt)

10Tul W] Simple recurrent neural network illustrated as a feedforward network.

Explaining the Figure

« To compute an output y_tfor an input x_t, we need the activation value for
the hidden layer h_t.

 To calculate this, we multiply the input x_t with the weight matrix W, and
the hidden layer from the previous time step h_t-1with the weight matrix
U.

* We add these values together and pass them through a suitable activation
function, g, to arrive at the activation value for the current hidden layer, h_t.
Once we have the values for the hidden layer, we proceed with the usual
computation to generate the output vector.

ht = g(Uh,_l—I—Wxt)
y: = f(Vh;)

FFEN vs RNN

2) b)
hy JCOI(C M)
w

DTGB Simplified sketch of (a) a feedforward neural language model versus (b) an
RNN language model moving through a text.

distribution over the entire vocabulary. That is, at time ¢:

e, = Ex 9.4)
h; = g(Uh;,—; +We,) 9.5)
y: = softmax(Vh,) 9.6)

Training RNNSs

Next word long and thanks for all
| l | | L
Loss [— 108 Yiong| =108 Yand| |[—10gyihanks | |[— 108 Ysor | |— lOg Yanl 7 Z Leg
A 4 A =1
y
-)
ompor () () (o)) ()
ry Vh A A A A A
h
RNN > > . N
\)))))
Input e
Embeddings
So long and thanks for

DT R XY Training RNNs as language models.

How to build a neural language model?

e Recall the Language Modeling task:
* Input: sequence of words x), 2 ... z®
« Output: prob. dist. of the next word PtV | 2® . . W)

* How about a window-based neural model?
* We saw this applied to Named Entity Recognition earlier

LOCATION
N\

U
(000000000000

N

|14

(0000 0000 0000 0000 0000

[I f I I

museums in Paris are amazing

23

A fixed-window neural Language Model

. Y
discard fixed window

S——— T O TS O et el {he students opened thei5
I 24

25

A fixed-window neural Language Model

books
laptops
output distribution
y = softmax(Uh + by) € RIV!
%
U
hidden layer
000000000000
%4
concatenated word embeddings [““ 0000 0000 0000]
e — [e(l); 8(2); 6(3); 6(4)] A - : -
words / one-hot vectors the students opened their
2V 22 B3 z® (D 2(2) 2(3) (@)

A fixed-window neural Language Model
Approximately: Y. Bengio, et al. (2000/2003): A Neural Probabilistic Language Model

Improvements over n-gram LM: books
* No sparsity problem
* Don’t need to store all observed n-grams

laptops

A 200

Remaining problems:

* Fixed window is too small
* Enlarging window enlarges W (000000000000 |
* Window can never be large enough! 1

U

e x(M and x@ are multiplied by e
completely different weights in W. [0000 Q000 0000 0000]
No symmetry in how the inputs are
processed. 1]] T
We need a neural architecture the students opened their
that can process any length input z! z? z® z®

26

3. Recurrent Neural Networks (RNN) Core idea: Apply the same
A family of neural architectures weights W repeatedly

outputs
(optional) {

S
~
IS
N’

h4)

hidden states <

A4

——le000}——

input sequence
(any length) {

8

27

9@ = P(2® |the students opened their)

A Simple RNN Language Model books

laptops
output distribution
4 = softmax (Uh“) + bg) e RV : :
U
h©)__ h() h(2) h(3) h4)
hidden states @ ® @ @ @
) = o (Whh(t_l) + Weel) + b1> o W, > | W | @ W | @ Wh | @
() L () () ()
h(9) is the initial hidden state @ @ (] ("])
— Y Ny N N
W, W, W, W,
| o o (@) o
word embeddings o) o 2| @ 3| O e @
e®) — pp® o @) @) O
@) @) @) @)
= T T T
words / one-hot vectors the students opened their
m(t) - R|V| m(l) w(Z) m(?’) w(4)

Note: this input sequence could be much /

28 longer now!

9@ = P(2® |the students opened their)

RNN Language Models books

laptops

* Recurrent computation is slow

* In practice, difficult to access [more on h 4 d h
) _ the students opene their
information from many steps | these later %, +(2) (3 ey

back

RNN Advantages:

* Can process any length input {Hl
« Computation for step t can (in a 200
theory) use information from U

many steps back ho) D B2 h(3) B4
* Model size doesn’t increase for @ W @ - O -) W O
longer input context : h : h : h : h :
 Same weights applied on every 0O O ® o ®
: - — Y 5 7 5
jcm;}este.p, scithere IS symmjtry W, W, AWe W,
in how inputs are processed. 8 Fg o Fg
(D) e(2) e O ed)
RNN Disadvantages: N 8 8 8 8
T Jz & Ts

29

Training an RNN Language Model

30

Get a big corpus of text which is a sequence of words =, ..., z(T)
Feed into RNN-LM; compute output distribution @(t) for every step t.
* i.e., predict probability dist of every word, given words so far

Loss function on step tis cross-entropy between predicted probability
distribution ¢, and the true next word y(* (one-hot for z(*+1):

JO©O) = CE®,§0) = - 3 y®log g = —log g

Tt41
wevV

Average this to get overall loss for entire training set:

T

T
1 1
__E: (2) :_E:_l 7 (t)
T — J (9) T Og yiBt+1

t=1

31

Training an RNN Language Model

= negative log prob

Predicted
prob dists

h(0)

of “students”

Loss — | JW)(6) J2)(6) J3)(6) JH ()
T N N N
g 72 7(3) g
N N N
U U U U
) R h() h3) h®)
@ @ @ @ @
o W, (@06 W, @ Wr |@|Wr |@| W,
@ 1@ 1@ | @ 1@
@ @ @ @ @
I N u
We We We We
e() e(2) e(3) e®)

—B—ja[cccc

Corpus =—— the

(D)

?[oooo

students

(2

opened

(3

their
p(4)

exams

32

Training an RNN Language Model

= negative log prob

Predicted
prob dists

h(0)

of “opened”
Loss — J1)(h) J2)(6) J3)(6) JH ()
T N N N
Q(l) g(2) Q(B) g(4)
N N N\
U U U U
) R h() h3) h®)
() @ O O ()
o W, (@06 W, @ Wr |@|Wr |@| W,
@ 1@ 1@ 1@ 1@
@ @ @ @ @
— N - . -
W, W, W, W,
e() e(2) e(3) e®)

—E»[QQQQ

Corpus =—— the

(D)

?[oooo

students
7 (2)

opened

(3

their
p(4)

exams

Training an RNN Language Model

= negative log prob
of “their”

Loss —— J)(p) J2)(6) J3)(6) J1)(6)

Predicted
g e g g®

prob dists - AU A - -
h©)_ h(i h(2) h(3) h4)

—

7
~
Cd

)

Wy,

7|

Wy,

Cd

o000
\

(eo00@
%%0000

Jg’l

)
)
]

e() e(2) e(3) e®)

-E%cccc
—E%oooo
—E%oooo

Corpus — the students opened their exams

(1) 2 3 4
s T 7 (2) 7 (3) (%)

Training an RNN Language Model

= negative log prob
of “exams”

Loss — J1)(h) J2)(6) J3)(6) JH ()

o

Predicted . . .
g e g

prob dists - AU A - -
h©)_ h(i h(2) h(3) h4)

—

S —

)

Wy,

7|

Wy,

Cd

o000
\

(eo00@
%%0000

Jg’l

)
)
]

e() e(2) e(3) e®)

-E%cccc
—E%oooo
—E%oooo

Corpus — the students opened their exams

(1) 2 3 4
y T 7 (2) 7 (3) (%)

Training an RNN Language Model

‘ “Teacher forcing”

T
Loss —— JO() + JO@O) + JO@) + JOE) . = JO=7> I
T N N N t=1
Predicfced 4 e e 4@
prob dists " " "
U U U U
h©)_ h(D) h(2) h(3) h4)
L @ () () @
o W, (@06 W, @ Wr |@|Wr |@| W,
® 1@ 1 1@ e
@ @ @ @ @
— N N N " v
We We We We
e(l) 6(2) 6(3) 6(4)

—59[0000
?[oooo

their
2 (4)

opened
2(3)

students
7 (2)

Corpus =—> the
(1)

exams

35

Training a RNN Language Model

However: Computing loss and gradients across entire corpus V,..., ") at once is
too expensive (memory-wise)!

J(0) = % S0)

 In practice, consider =V, ... 2(T) as a sentence (or a document)

e Recall: Stochastic Gradient Descent allows us to compute loss and gradients for small
chunk of data, and update.

« Compute loss J(0)for a sentence (actually, a batch of sentences), compute gradients
and update weights. Repeat on a new batch of sentences.

36

Backpropagation for RNNs

J(t)(g)
h©) h(t=3) h(t—2) h(t—1) h(®)
@ @ @ @ @
@ W, Wi |@| W, |@|Wr |@| Wh |@| Wi
° 1o e[e[e[
® o o [of (o

Question: What’s the derivative of J)(8) w.r.t. the repeated weight matrix Wy, ?

“The gradient w.r.t. a repeated weight
is the sum of the gradient
(i) w.r.t. each time it appears”

0.7 t o 9J®
oW, ~ L~ oW,

1

Answer:

Why?

37

Multivariable Chain Rule

« Given a multivariable function f(z,y), and two single variable functions
z(t) and y(t), here's what the multivariable chain rule says:

d _O0f dz Of dy

P
Derivative of composition function

Gradients sum at outward branches
One final output f(x(t),y(t))
o /‘ \ — -
Two (1)1:&6;&1:(11&‘56 T (t) y (t) \ : :
. \ / a=o2x _|_ Y
One input L b=max(y,z) Of _0fda Of Ob
f=ab Oy 0Oady by

Source:
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

38

https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

Training the parameters of RNNs: Backpropagation for RNNs

39

0)

h®)

o.J ()
oW,

—

Question: How do we calculate this?

Answer: Backpropagate over timesteps
i=t, ..,0, summing gradients as you go.
This algorithm is called “backpropagation
through time” [Werbos, P.G., 1988, Neural
Networks 1, and others]

V

(t)(
o
@

Apply the multivariable chain rule:

o.J® toJ®)

=1

OWal

oWy, = OW,,

oW,

v

In practice, often
“truncated” after ~20
timesteps for training
efficiency reasons

Generating with an RNN Language Model (“Generating roll outs”)

Just like an n-gram Language Model, you can use a RNN Language Model to
generate text by repeated sampling. Sampled output becomes next step’s input.

m favorite season is spring </s>
N N N
T/sample sample sample sample Tsample sample
g g2 g3 g® g*))
N N N
U U U U U U
G R h(2) h(3) h4 h4) h(4)
@ @ @ () @ @ ()
oW, |06/ W, l@|Wr |@|Wr |@|Wr |@| Wr |@®
@ 1@ 1@ 1@ | @ 1@ 1@
@ @ @ () @ @ @
R N . N N
W, W, We W, We W,
: r.1 r—.—x r.1 : r—‘—x
(1) (2)] © 3) © 4] © (4) 4)| ©
e o e o e o e o e o e o
o @) @) @) @ @)
T & T& & & s
<s> my favorite season is spring

Generating text with an RNN Language Model

Let’s have some fun!
* You can train an RNN-LM on any kind of text, then generate text in that style.
* RNN-LM trained on Obama speeches: i,

The United States will step up to the cost of a new challenges of the American
people that will share the fact that we created the problem. They were attacked
and so that they have to say that all the task of the final days of war that I will not
be able to get this done.

Source: https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2eal

41

https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0

Generating text with an RNN Language Model

Let’s have some fun!
* You can train an RNN-LM on any kind of text, then generate text in that style.
« RNN-LM trained on Harry Potter:

“Sorry,” Harry shouted, panicking—*“T'll leave those brooms in London, are
they?”

“No idea,” said Nearly Headless Nick, casting low close by Cedric, carrying the
last bit of treacle Charms, from Harry’s shoulder, and to answer him the
common room perched upon it, four arms held a shining knob from when the

spider hadn’t felt it seemed. He reached the teams too.

Source: https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-82a9431803da6

42

https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6

Generating text with an RNN Language Model

Let’s have some fun!
* You can train an RNN-LM on any kind of text, then generate text in that style.
 RNN-LM trained on recipes:

Title: CHOCOLATE RANCH BARBECUE
Categories: Game, Casseroles, Cookies, Cookies

Yield: 6 Servings

2 tb Parmesan cheese —- chopped
1 ¢ Coconut milk
3 Eggs, beaten

Place each pasta over layers of lumps. Shape mixture into the moderate oven and simmer
until firm. Serve hot in bodied fresh, mustard, orange and cheese.

Combine the cheese and salt together the dough in a large skillet; add the ingredients
and stir in the chocolate and pepper.

Source: https://gist.github.com/nylki/lefbaa36635956d35bcc

43

https://gist.github.com/nylki/1efbaa36635956d35bcc

Generating text with a RNN Language Model

Let’s have some fun!
* You can train a RNN-LM on any kind of text, then generate text in that style.
 RNN-LM trained on paint color names:

" Ghasty Pink 231 137 165 | 'Sand Dan 201 172 143

I Power Gray 151 124 112 I Grade Bat 48 94 83

| 'Navel Tan 199 173 140 " | Light Of Blast 175 150 147
Bock Coe White 221 215 236 I Grass Bat 176 99 108
Horble Gray 178 181 196 Sindis Poop 204 205 194

I Homestar Brown 133 104 85 Dope 219 209 179

I snader Brown 144 106 74 I Testing 156 101 106
Golder Craam 237 217 177 " Stoner Blue 152 165 159
Hurky White 232 223 215 Burble Simp 226 181 132

Burf Pink 223 173 179 ' Stanky Bean 197 162 171
Rose Hork 230 215 198 © | Turdly 190 164 116

This is an example of a character-level RNN-LM (predicts what character comes next)

Source: http://aiweirdness.com/post/160776374467/new-paint-colors-invented-by-neural-network

44

http://aiweirdness.com/post/160776374467/new-paint-colors-invented-by-neural-network

Evaluating Language Models

e The standard evaluation metric for Language Models is perplexity.

T 1/T
_ 1
perplexity =[] (PLM(m<t+1>| 20, ,a:(l))) " Normalized by

t=1 number of words

N J
Y

Inverse probability of corpus, according to Language Model

* This is equal to the exponential of the cross-entropy loss J(6):

T 1/T ! T
H < ~(t)) = ©xp (T Z — log yg—"tt)+1> — exp(J(H))

t=1 yiBt+1 t=1

Lower perplexity is better!

45

RNNs greatly improved perplexity over what came before

Model Perplexity

n-gram model — | Interpolated Kneser-Ney 5-gram (Chelba et al., 2013) 67.6
RNN-1024 + MaxEnt 9-gram (Chelba et al., 2013)) L

RNN-2048 + BlackOut sampling (Ji et al., 2015) 68.3

Increasingly Sparse Non-negative Matrix factorization (Shazeer et 52 9

complex RNNs Al 2015) .

LSTM-2048 (Jozefowicz et al., 2016) 43.7

2-layer LSTM-8192 (Jozefowicz et al., 2016) 30

Ours small (LSTM-2048) 43.9

| | Ours large (2-layer LSTM-2048) 39.8 !

Perplexity improves
(lower is better)

Source: https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-words/

46

https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-words/

4. Problems with RNNs: Vanishing and Exploding Gradients

J®)(6)

N

R h(?) h(3) h4)
O O O O
0 W | @ W | @ W | @
O @ @ @
O O O O

Vanishing gradient intuition

J(4)(9)
N
0 O O O
0 W @ |44 @ |44 _ '
O @ @ .
O O O O
3'](_4}

48

Vanishing gradient intuition

J)(9)
N
R h(2) h(3) h(4)
@ @ @ @
® |%% | @ 7% @ |%% _ '
@ | @ 1@ B
@ @ @ @

9J® oh® 9J@

A — X
Oh(1) Oh) " Hh(2)

chain rule!

49

Vanishing gradient intuition

J)(9)
N
R h(?) h(3 h(4)
@ @ @ @
) %4 | @ %4 | @ %% _ ’
@ | @ 1@ .
@ @ () @
oJW Oh?) oR® HJ@
o)~ oRM Oh® " Ohe)
chain rule!

50

51

Vanishing gradient intuition

J)(9)

N

htV h(2) K (3) R®)

@ (]) ®

® w__|e W e W e

@ 1@ 1 @ @
ZAR Oh®) oh® 9J®
Oh(H) — OhM) Oh® " FCPTAC

chain rule!

Vanishing gradient intuition

J(4)(9)
N
o) o) o) o)
O W ___|e W ___|e W _ @
O O O i)
O O O O
0.J* oh| Ih(a.J@
ohM — o™ M| or®

Vanishing gradient problem:
When these are small, the gradient
signal gets smaller and smaller as it

What happens if these are small?
backpropagates further

52

Vanishing gradient proof sketch (linear case)

(1) _ (t-1) (t)
* Recall: h —U(Whh + Wez +b1)
 What if ¢ were the identity function, o(z) =z ?
oh®) . _ .
SR — diag (0' (Whh(t D4+ woa® + b1)) Wi, (chain rule)
=1 Wh - Wh

* Consider the gradient of the loss JD(0) on step?, with respect
to the hidden state h(9) on some previous stepj.let { =4 — j
dJD (@) 9JD(H H Oh®)

OhG) h(z) oht—1) (chain rule)
71<t<i
8 (9) 3J(i)(9) ¢ Oh®)
— || W, = w I f
Ohl) .22 "7 oW Th (value o oh(—1))

If W, is “small”, then this term gets
exponentially problematic as £ becomes large

Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanul3.pdf
53 (and supplemental materials), at http://proceedings.mlr.press/v28/pascanul3-supp.pdf

http://proceedings.mlr.press/v28/pascanu13.pdf
http://proceedings.mlr.press/v28/pascanu13-supp.pdf

Vanishing gradient proof sketch (linear case)

sufficient but

What’s wrong with w# ? notnecessary
[|
Consider if the eigenvalues of W;, are all less than 1:
)‘17)\27"-7)\71 <1
d1,42,---,49, (eigenvectors)

(i) . : .
8gh(f)9) w* using the eigenvectors of W, as a basis:

We can write

0J (6 n
Bh(f)) sz — z; C qui ~ 0 (for large /)

Approaches 0 as £ grows, so gradient vanishes

What about nonlinear activations o (i.e., what we use?)
 Pretty much the same thing, except the proof requires A\; < =y
for some v dependent on dimensionality and o

Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanul3.pdf
(and supplemental materials), at http://proceedings.mlr.press/v28/pascanul3-supp.pdf

54

http://proceedings.mlr.press/v28/pascanu13.pdf
http://proceedings.mlr.press/v28/pascanu13-supp.pdf

Why is vanishing gradient a problem?

J2) () J®(6)
N A
R h(2) h(3) h4)
@ @ @ @
ol . W O W __|e W ___|®
@ @ @ 1@
@ @ @ @

Gradient signal from far away is lost because it’s much smaller than gradient signal from close-by.

So, model weights are updated only with respect to near effects, not long-term effects.

55

Effect of vanishing gradient on RNN-LM

* LM task: When she tried to print her tickets, she found that the printer was out of toner.
She went to the stationery store to buy more toner. It was very overpriced. After
installing the toner into the printer, she finally printed her

 To learn from this training example, the RNN-LM needs to model the dependency
between “tickets” on the 7t step and the target word “tickets” at the end.

e Butif the gradient is small, the model can’t learn this dependency
* So, the model is unable to predict similar long-distance dependencies at test time

56

Why is exploding gradient a problem?

* If the gradient becomes too big, then the SGD update step becomes too big:

learning rate
,_L\
grew — Hold . CEVQJ(@)

gradient

e This can cause bad updates: we take too large a step and reach a weird and bad
parameter configuration (with large loss)

* You think you’ve found a hill to climb, but suddenly you’re in lowa

* Inthe worst case, this will result in Inf or NaN in your network
(then you have to restart training from an earlier checkpoint)

I 57

Gradient clipping: solution for exploding gradient

e Gradient clipping: if the norm of the gradient is greater than some threshold, scale it
down before applying SGD update

Algorithm 1 Pseudo-code for norm clipping
g+ %5
if ||g|| > threshold then

~ , threshold a
& el &

end if

e Intuition: take a step in the same direction, but a smaller step

* In practice, remembering to clip gradients is important, but exploding gradients are an
easy problem to solve

58 Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanul3.pdf

http://proceedings.mlr.press/v28/pascanu13.pdf

How to fix the vanishing gradient problem?

 The main problem is that it’s too difficult for the RNN to learn to preserve information
over many timesteps.

* Inavanilla RNN, the hidden state is constantly being rewritten

h® — o (Whh(t—l) 4+ wa(t) 4+ b)

* First off next time: How about an RNN with separate memory which is added to?
e LSTMs

* And then: Creating more direct and linear pass-through connections in model
* Attention, residual connections, etc.

59

5. Recap

 Language Model: A system that predicts the next word

 Recurrent Neural Network: A family of neural networks that:
e Take sequential input of any length
* Apply the same weights on each step

e Can optionally produce output on each step

 Recurrent Neural Network # Language Model

 We've shown that RNNs are a great way to build a LM (despite some problems)

e RNNs are also useful for much more!

60

Why should we care about Language Modeling?

e Language Modeling is a benchmark task that helps us measure our progress on
predicting language use

e Language Modeling is a subcomponent of many NLP tasks, especially those involving
generating text or estimating the probability of text:

Predictive typing

Speech recognition
Handwriting recognition
Spelling/grammar correction
Authorship identification
Machine translation
Summarization

Dialogue

etc.

e Everything else in NLP has now been rebuilt upon Language Modeling: GPT-3 is an LM

61

Other RNN uses: RNNs can be used for sequence tagging
e.g., part-of-speech tagging, named entity recognition

DT J

—

NN VBN

i1
i

the startled cat knocked over

N

)
=
=
=

\ 4
\ 4

Vv
A4

.
%

—>[Qovoc]—>
—>[Qovoc]—>

T
sy

~
>
®
<
Q
n
M

RNNs can be used for sentence classification
e.g., sentiment classification

I 63

©
O
»
=

Sentence

I

encoding

How to compute
sentence encoding?

—(e0000]

overall

\ 4
A4
Vv

—(e0000]

@ ‘@
@ @
@ @
@ @

/ the

enjoyed

\ 4
\ 4
\ 4

RNNs can be used for sentence classification
e.g., sentiment classification

positive How to compute
i sentence encoding?
(@)
Sentence : Basic way:
encoding @) Use final hidden

state
ech‘:?/s

\ 4

— 0000

\ 4

\ 4

\ 4

\ 4

—(e0000]

A4

%

ot

— 0000

! !

—

enjoyed the movie

overall
I 64

RNNs can be used for sentence classification
e.g., sentiment classification

positive How to compute
i sentence encoding?
o Usually bett
O sually better:
Sentence o - |
encoding %) ake element-wise

max or mean of all
hidden states

\ 4
\ 4

\ 4

\ 4

\ 4

—/e00@

\ 2

—/o00@

T

enjoyed the movie

overall
I 65

RNNs can be used as an encoder module
e.g., question answering, machine translation, many other tasks!

Answer: German
Here the RNN acts as an A
: N T
encoder for the Question (the e %, "o,
i K O RN
hidden states represent the \O&so\(.\\&e(%.»‘“ s..?"% %/
Question). The encoder is part e %0
of a larger neural system. Context: Ludwig
van Beethoven was
a German
composer and
pianist. A crucial
figure ...

Vv

A4

—(o000|

\ 4

——| 0000

A4

—/e00®

—e00®

!

Question: what nationality was Beethoven

66

RNN-LMs can be used to generate text
e.g., speech recognition, machine translation, summarization

RNN-LM
AL
' \
what’s the weather

Input (audio)

T 1T
i

<START> what’s the

conditioning

\ 4

\ 4

s
:

This is an example of a conditional language model.
We’ll see Machine Translation in much more detail starting next lecture.

67

Terminology and a look forward

The RNN described in this lecture = simple/vanilla/ElIman RNN

Next lecture: You will learn about other RNN flavors

’
14
¥
h
i

like LSTM S8

=

«J’l“ - St

¥ and multi-layer RNNs "=

% %8 ;ly
4‘? Y

By the end of the course: You will understand phrases like

“stacked bidirectional LSTMs with residual connections and self-attention”

N

68

