
	 	 	 	

Recurrent	Neural	Networks

"9/B)< 8N,.;< 82 4-21@ "-/;7L,-

 CS 114B
March 28, 2023

Overview

1. Modeling	sequences

2. Recurrent	neural	networks:	An	abstraction

3. Usage	patterns	for	RNNs

4. BiDirectional RNNs

5. A	concrete	example:	The	Elman	RNN

6. The	vanishing	gradient	problem

7. Long	short-term	memory	units

2

Sequences	abound	in	NLP

3

S a l t 	 L a k e 	 C i t y

Words	are	sequences	of	characters

Sequences	abound	in	NLP

4

S a l t 	 L a k e 	 C i t y

John lives in Salt Lake City

Sentences	are	sequences	of	words

Sequences	abound	in	NLP

5

S a l t 	 L a k e 	 C i t y

John lives in Salt Lake City

Paragraphs	are	sequences	of	sentences

John	lives	in	Salt	Lake	City. He	enjoys	hiking	with	his	dog. His	cat	hates	hiking.

Sequences	abound	in	NLP

6

S a l t 	 L a k e 	 C i t y

John lives in Salt Lake City

And	so	on… inputs	are	naturally	sequences	at	different	levels

John	lives	in	Salt	Lake	City. He	enjoys	hiking	with	his	dog. His	cat	hates	hiking.

Sequences	abound	in	NLP

7

S a l t 	 L a k e 	 C i t y

John lives in Salt Lake City

Outputs	can	also	be	sequences

John	lives	in	Salt	Lake	City. He	enjoys	hiking	with	his	dog. His	cat	hates	hiking.

Sequences	abound	in	NLP

8

S a l t 	 L a k e 	 C i t y

John lives in Salt Lake City

Part-of-speech	tags	form	a	sequence

John	lives	in	Salt	Lake	City. He	enjoys	hiking	with	his	dog. His	cat	hates	hiking.

John lives in Salt Lake City

Sequences	abound	in	NLP

9

S a l t 	 L a k e 	 C i t y

John lives in Salt Lake City

Part-of-speech	tags	form	a	sequence

John	lives	in	Salt	Lake	City. He	enjoys	hiking	with	his	dog. His	cat	hates	hiking.

John lives in Salt Lake City

Noun Verb Preposition Noun Noun Noun

Sequences	abound	in	NLP

10

S a l t 	 L a k e 	 C i t y

John lives in Salt Lake City

Even	things	that	don’t	look	like	a	sequence	can	be	made	to	look	like	one

John	lives	in	Salt	Lake	City. He	enjoys	hiking	with	his	dog. His	cat	hates	hiking.

John lives in Salt Lake City

Noun Verb Preposition Noun Noun Noun

Person Location

Example:	Named	entity	tags

Sequences	abound	in	NLP

11

S a l t 	 L a k e 	 C i t y

John lives in Salt Lake City

Even	things	that	don’t	look	like	a	sequence	can	be	made	to	look	like	one

John	lives	in	Salt	Lake	City. He	enjoys	hiking	with	his	dog. His	cat	hates	hiking.

John lives in Salt Lake City

Noun Verb Preposition Noun Noun Noun

Example:	Named	entity	tags

B-PER O O B-LOC I-LOC I-LOC

Sequences	abound	in	NLP

12

S a l t 	 L a k e 	 C i t y

John lives in Salt Lake City

And	we	can	get	very	creative	with	such	encodings

John	lives	in	Salt	Lake	City. He	enjoys	hiking	with	his	dog. His	cat	hates	hiking.

Noun Verb Preposition Noun Noun Noun

Example:	We	can	encode	parse	trees	as	a	sequence	
of	decisions	needed	to	construct	the	tree

B-PER O O B-LOC I-LOC I-LOC

Sequences	abound	in	NLP

13

S a l t 	 L a k e 	 C i t y

John lives in Salt Lake City

And	we	can	get	very	creative	with	such	encodings

John	lives	in	Salt	Lake	City. He	enjoys	hiking	with	his	dog. His	cat	hates	hiking.

Noun Verb Preposition Noun Noun Noun

Example:	We	can	encode	parse	trees	as	a	sequence	
of	decisions	needed	to	construct	the	tree

B-PER O O B-LOC I-LOC I-LOC

Natural	question:	How	do	we	model	sequential	inputs	and	outputs?

Sequences	abound	in	NLP

14

S a l t 	 L a k e 	 C i t y

John lives in Salt Lake City

And	we	can	get	very	creative	with	such	encodings

John	lives	in	Salt	Lake	City. He	enjoys	hiking	with	his	dog. His	cat	hates	hiking.

Noun Verb Preposition Noun Noun Noun

Example:	We	can	encode	parse	trees	as	a	sequence	
of	decisions	needed	to	construct	the	tree

B-PER O O B-LOC I-LOC I-LOC

Natural	question:	How	do	we	model	sequential	inputs	and	outputs?

More	concretely,	we	need	a	mechanism	that	allows	us	to

1. Capture	sequential	dependencies	between	inputs

2. Model	uncertainty	over	sequential	outputs

Modeling	sequences:	The	problem

Suppose	we	want	to	build	a	language	model	that	
computes	the	probability	of	sentences

We	can	write	the	probability	as	

𝑃 𝑥#, 𝑥%, 𝑥&,⋯ , 𝑥(=*𝑃(𝑥, ∣ 𝑥#, 𝑥% ⋯ , 𝑥,.#)
�

,

15

It	was	a	bright	cold	day	in	April.

Example:	A	Language	model	

16

It	was	a	bright	cold	day	in	April.

Probability	of	a	word	starting	a	sentence

Example:	A	Language	model	

17

It	was	a	bright	cold	day	in	April.

Probability	of	a	word	starting	a	sentence

Probability	of	a	word	following	“It”

Example:	A	Language	model	

18

It	was	a	bright	cold	day	in	April.

Probability	of	a	word	starting	a	sentence

Probability	of	a	word	following	“It”

Example:	A	Language	model	

19

Probability	of	a	word	following	“It	was”

It	was	a	bright	cold	day	in	April.

Probability	of	a	word	starting	a	sentence

Probability	of	a	word	following	“It”

Example:	A	Language	model	

20

Probability	of	a	word	following	“It	was”

Probability	of	a	word	following	“It	was	a”

It	was	a	bright	cold	day	in	April.

Probability	of	a	word	starting	a	sentence

Probability	of	a	word	following	“It”

Probability	of	a	word	following	“It	was”

Probability	of	a	word	following	“It	was	a”

Example:	A	Language	model	

21

A	history-based	model

• Each	token	is	dependent	on	all	the	tokens	that	came	
before	it
– Simple	conditioning
– Each	P(xi |	…)	is	a	multinomial	probability	distribution	over	the	

tokens

• What	is	the	problem	here?
– How	many	parameters	do	we	have?	

• Grows	with	the	size	of	the	sequence!

22

A	history-based	model

• Each	token	is	dependent	on	all	the	tokens	that	came	
before	it
– Simple	conditioning
– Each	P(xi |	…)	is	a	multinomial	probability	distribution	over	the	

tokens

• What	is	the	problem	here?
– How	many	parameters	do	we	have?	

• Grows	with	the	size	of	the	sequence!

23

The	traditional	solution:	Lose	the	history

Make	a	modeling	assumption

Example:	The	first	order	Markov	model	assumes	that
𝑃	 𝑥, 𝑥#, 𝑥%,⋯ , 𝑥,.# = 𝑃(𝑥, ∣ 𝑥,.#)

This	allows	us	to	simplify	

𝑃 𝑥#, 𝑥%, 𝑥&,⋯ , 𝑥(=*𝑃(𝑥, ∣ 𝑥#, 𝑥% ⋯ , 𝑥,.#)
�

,

24

The	traditional	solution:	Lose	the	history

Make	a	modeling	assumption

Example:	The	first	order	Markov	model	assumes	that
𝑃	 𝑥, 𝑥#, 𝑥%,⋯ , 𝑥,.# = 𝑃(𝑥, ∣ 𝑥,.#)

This	allows	us	to	simplify	

𝑃 𝑥#, 𝑥%, 𝑥&,⋯ , 𝑥(=*𝑃(𝑥, ∣ 𝑥#, 𝑥% ⋯ , 𝑥,.#)
�

,

25

These	dependencies	are	ignored

The	traditional	solution:	Lose	the	history

Make	a	modeling	assumption

Example:	The	first	order	Markov	model	assumes	that
𝑃	 𝑥, 𝑥#, 𝑥%,⋯ , 𝑥,.# = 𝑃(𝑥, ∣ 𝑥,.#)

This	allows	us	to	simplify	

𝑃 𝑥#, 𝑥%, 𝑥&,⋯ , 𝑥(=*𝑃(𝑥, ∣ 𝑥,.#)
�

,

26

Example:	Another	language	model

It	was	a	bright	cold	day	in	April

27

Probability	of	a	word	starting	a	sentence

Probability	of	a	word	following	“It”

Probability	of	a	word	following	“was”

Probability	of	a	word	following	“a”

Example:	Another	language	model

It	was	a	bright	cold	day	in	April

28

Probability	of	a	word	starting	a	sentence

Probability	of	a	word	following	“It”

Probability	of	a	word	following	“was”

Probability	of	a	word	following	“a”

If	there	are	K	tokens/states,	how	many	parameters	
do	we	need?	

Example:	Another	language	model

It	was	a	bright	cold	day	in	April

29

Probability	of	a	word	starting	a	sentence

Probability	of	a	word	following	“It”

Probability	of	a	word	following	“was”

Probability	of	a	word	following	“a”

If	there	are	K	tokens/states,	how	many	parameters	
do	we	need?	 O(K2)

Can	we	do	better?

• Can	we	capture	the	meaning	of	the	entire	history	
without	arbitrarily	growing	the	number	of	parameters?

• Or	equivalently,	can	we	discard	the	Markov	assumption?

• Can	we	represent	arbitrarily	long	sequences	as	fixed	
sized	vectors?	
– Perhaps	to	provide	features	for	subsequent	classification

• Answer:	Recurrent	neural	networks	(RNNs)

30

Can	we	do	better?

• Can	we	capture	the	meaning	of	the	entire	history	
without	arbitrarily	growing	the	number	of	parameters?

• Or	equivalently,	can	we	discard	the	Markov	assumption?

• Can	we	represent	arbitrarily	long	sequences	as	fixed	
sized	vectors?	
– Perhaps	to	provide	features	for	subsequent	classification

• Answer:	Recurrent	neural	networks	(RNNs)

31

Can	we	do	better?

• Can	we	capture	the	meaning	of	the	entire	history	
without	arbitrarily	growing	the	number	of	parameters?

• Or	equivalently,	can	we	discard	the	Markov	assumption?

• Can	we	represent	arbitrarily	long	sequences	as	fixed	
sized	vectors?	
– Perhaps	to	provide	features	for	subsequent	classification

• Answer:	Recurrent	neural	networks	(RNNs)

32

Overview

1. Modeling	sequences

2. Recurrent	neural	networks:	An	abstraction

3. Usage	patterns	for	RNNs

4. BiDirectional RNNs

5. A	concrete	example:	The	Elman	RNN

6. The	vanishing	gradient	problem

7. Long	short-term	memory	units

2

Recurrent	neural	networks

• First	introduced	by	Elman	1990

• Provides	a	mechanism	for	representing	sequences	of	
arbitrary	length	into	vectors	that	encode	the	
sequential	information

• Currently,	perhaps	one	of	the	most	commonly	used	
tool	in	the	deep	learning	toolkit	for	NLP	applications

The	RNN	abstraction

A	high	level	overview	that	doesn’t	go	into	details	

4

An	RNN	
cell

Input

Output

An	RNN	cell	is	a	unit	
of	differentiable	
compute	that	maps	
inputs	to	outputs

The	RNN	abstraction

A	high	level	overview	that	doesn’t	go	into	details	

5

An	RNN	
cell

Input

Output

An	RNN	cell	is	a	unit	
of	differentiable	
compute	that	maps	
inputs	to	outputs

So	far,	no	way	to	
build	a	sequence	of	
such	cells

The	RNN	abstraction

A	high	level	overview	that	doesn’t	go	into	details	

6

An	RNN	
cell

Input

Output

Recurrent	input

To	allow	the	ability	to	
compose	these	cells,	they	
take	a	recurrent	input	
from	a	previous	such	cell

The	RNN	abstraction

A	high	level	overview	that	doesn’t	go	into	details	

7

An	RNN	
cell

Input

Output

Recurrent	outputRecurrent	input

To	allow	the	ability	to	
compose	these	cells,	they	
take	a	recurrent	input	
from	a	previous	such	cell

In	addition	to	the	output,	
they	also	produce	a	
recurrent output that	can	
serve	as	a	memory	of	past	
states	for	the	next	such	cell

The	RNN	abstraction

A	high	level	overview	that	doesn’t	go	into	details	

8

Conceptually	two	operations	

Using	the	input	and	the	
recurrent	input	(also	called	the	
previous	cell	state),	compute

1. The	next	cell	state

2. The	output

The	RNN	abstraction:	A	simple	example

9

John lives in Salt Lake City

This	template	is	unrolled for	each	input

The	RNN	abstraction:	A	simple	example

10

John lives in Salt Lake City

John

Initial	state

Output	1

This	computation	
graph	is	used	here

The	RNN	abstraction:	A	simple	example

11

John lives in Salt Lake City

John

Initial	state

lives

Output	1 Output	2

This	computation	
graph	is	used	here

The	RNN	abstraction:	A	simple	example

12

John lives in Salt Lake City

John

Initial	state

lives in

Output	1 Output	2 Output	3

This	computation	
graph	is	used	here

The	RNN	abstraction:	A	simple	example

13

John lives in Salt Lake City

John

Initial	state

lives in Salt

Output	1 Output	2 Output	3 Output	4

This	computation	
graph	is	used	here

The	RNN	abstraction:	A	simple	example

14

John lives in Salt Lake City

John

Initial	state

lives in Salt Lake

Output	1 Output	2 Output	3 Output	4 Output	5

This	computation	
graph	is	used	here

The	RNN	abstraction:	A	simple	example

15

John lives in Salt Lake City

John

Initial	state

lives in Salt Lake City

Output	1 Output	2 Output	3 Output	4 Output	5 Output	6

This	computation	
graph	is	used	here

The	RNN	abstraction

16

An	RNN	
cell

Input

Output

Recurrent	outputRecurrent	input

Sometimes	this	is	represented	as	a	“neural	network	with	a	loop”.	

But	really,	when	unrolled,	there	are	no	loops.	Just	a	big	feedforward	network.

An	abstract	RNN	:Notation

• Inputs	to	cells:	𝐱"at	the	𝑡$% step
– These	are	vectors

• Cell	states	(i.e.	recurrent	inputs	and	outputs):	𝐬"at	the	𝑡$% step
– These	are	also	vectors

• Outputs:	𝐲"at	the	𝑡$% step
– These	are	also	vectors

• At	each	step:
– Compute	the	next	cell	state:	𝐬"() = R(𝐱", 𝒔")
– Compute	the	output:	𝒚" = O(𝐬"())

17

An	abstract	RNN	:Notation

• Inputs	to	cells:	𝐱"at	the	𝑡$% step
– These	are	vectors

• Cell	states	(i.e.	recurrent	inputs	and	outputs):	𝐬"at	the	𝑡$% step
– These	are	also	vectors

• Outputs:	𝐲"at	the	𝑡$% step
– These	are	also	vectors

• At	each	step:
– Compute	the	next	cell	state:	𝐬"() = R(𝐱", 𝒔")
– Compute	the	output:	𝒚" = O(𝐬"())

18

An	abstract	RNN	:Notation

• Inputs	to	cells:	𝐱"at	the	𝑡$% step
– These	are	vectors

• Cell	states	(i.e.	recurrent	inputs	and	outputs):	𝐬"at	the	𝑡$% step
– These	are	also	vectors

• Outputs:	𝐲"at	the	𝑡$% step
– These	are	also	vectors

• At	each	step:
– Compute	the	next	cell	state:	𝐬"() = R(𝐱", 𝒔")
– Compute	the	output:	𝒚" = O(𝐬"())

19

An	abstract	RNN	:Notation

• Inputs	to	cells:	𝐱"at	the	𝑡$% step
– These	are	vectors

• Cell	states	(i.e.	recurrent	inputs	and	outputs):	𝐬"at	the	𝑡$% step
– These	are	also	vectors

• Outputs:	𝐲"at	the	𝑡$% step
– These	are	also	vectors

• At	each	step:
– Compute	the	next	cell	state:	𝐬" = R(𝐬"2), 𝐱")
– Compute	the	output:	𝒚" = O(𝐬")

20

An	abstract	RNN	:Notation

• Inputs	to	cells:	𝐱"at	the	𝑡$% step
– These	are	vectors

• Cell	states	(i.e.	recurrent	inputs	and	outputs):	𝐬"at	the	𝑡$% step
– These	are	also	vectors

• Outputs:	𝐲"at	the	𝑡$% step
– These	are	also	vectors

• At	each	step:
– Compute	the	next	cell	state:	𝐬" = R(𝐬"2), 𝐱")
– Compute	the	output:	𝒚" = O(𝐬")

21

Both	these	functions	
can	be	parameterized.	
That	is,	they	can	be	
neural	networks	whose	
parameters	are	trained.

What	does	unrolling	the	RNN	do?

• At	each	step:
– Compute	the	next	cell	state:	𝐬" = R(𝐬"2), 𝐱")
– Compute	the	output:	𝒚" = O(𝐬")

• We	can	write	this	as:
– 𝐬) = R(𝐬3, 𝐱))

22

What	does	unrolling	the	RNN	do?

• At	each	step:
– Compute	the	next	cell	state:	𝐬" = R(𝐬"2), 𝐱")
– Compute	the	output:	𝒚" = O(𝐬")

• We	can	write	this	as:
– 𝐬) = R(𝐬3, 𝐱))
– 𝐬4 = R(𝐬), 𝐱4) = R(R 𝐬3, 𝐱) , 𝐱4)	

23

What	does	unrolling	the	RNN	do?

• At	each	step:
– Compute	the	next	cell	state:	𝐬" = R(𝐬"2), 𝐱")
– Compute	the	output:	𝒚" = O(𝐬")

• We	can	write	this	as:
– 𝐬) = R(𝐬3, 𝐱))
– 𝐬4 = R(𝐬), 𝐱4) = R(R 𝐬3, 𝐱) , 𝐱4)	

24

Encodes	the	sequence	
upto t=2	into	a	single	
vector

What	does	unrolling	the	RNN	do?

• At	each	step:
– Compute	the	next	cell	state:	𝐬" = R(𝐬"2), 𝐱")
– Compute	the	output:	𝒚" = O(𝐬")

• We	can	write	this	as:
– 𝐬) = R(𝐬3, 𝐱))
– 𝐬4 = R(𝐬), 𝐱4) = R(R 𝐬3, 𝐱) , 𝐱4)	
– 𝐬6 = R(𝐬4, 𝐱6) = R R R(𝐬3, 𝐱) , 𝐱4 , 𝐱6)		

25

What	does	unrolling	the	RNN	do?

• At	each	step:
– Compute	the	next	cell	state:	𝐬" = R(𝐬"2), 𝐱")
– Compute	the	output:	𝒚" = O(𝐬")

• We	can	write	this	as:
– 𝐬) = R(𝐬3, 𝐱))
– 𝐬4 = R(𝐬), 𝐱4) = R(R 𝐬3, 𝐱) , 𝐱4)	
– 𝐬6 = R(𝐬4, 𝐱6) = R R R(𝐬3, 𝐱) , 𝐱4 , 𝐱6)		

26

Encodes	the	sequence	
upto t=3	into	a	single	
vector

What	does	unrolling	the	RNN	do?

• At	each	step:
– Compute	the	next	cell	state:	𝐬" = R(𝐬"2), 𝐱")
– Compute	the	output:	𝒚" = O(𝐬")

• We	can	write	this	as:
– 𝐬) = R(𝐬3, 𝐱))
– 𝐬4 = R(𝐬), 𝐱4) = R(R 𝐬3, 𝐱) , 𝐱4)	
– 𝐬6 = R(𝐬4, 𝐱6) = R R R(𝐬3, 𝐱) , 𝐱4 , 𝐱6)		
– 𝐬7 = R(𝐬6, 𝐱7) = R R R(𝐬3, 𝐱) , 𝐱4 , 𝐱6), 𝐱7)	

27

What	does	unrolling	the	RNN	do?

• At	each	step:
– Compute	the	next	cell	state:	𝐬" = R(𝐬"2), 𝐱")
– Compute	the	output:	𝒚" = O(𝐬")

• We	can	write	this	as:
– 𝐬) = R(𝐬3, 𝐱))
– 𝐬4 = R(𝐬), 𝐱4) = R(R 𝐬3, 𝐱) , 𝐱4)	
– 𝐬6 = R(𝐬4, 𝐱6) = R R R(𝐬3, 𝐱) , 𝐱4 , 𝐱6)		
– 𝐬7 = R(𝐬6, 𝐱7) = R R R(𝐬3, 𝐱) , 𝐱4 , 𝐱6), 𝐱7)	

28

Encodes	the	sequence	
upto t=4	into	a	single	
vector

What	does	unrolling	the	RNN	do?

• At	each	step:
– Compute	the	next	cell	state:	𝐬" = R(𝐬"2), 𝐱")
– Compute	the	output:	𝒚" = O(𝐬")

• We	can	write	this	as:
– 𝐬) = R(𝐬3, 𝐱))
– 𝐬4 = R(𝐬), 𝐱4) = R(R 𝐬3, 𝐱) , 𝐱4)	
– 𝐬6 = R(𝐬4, 𝐱6) = R R R(𝐬3, 𝐱) , 𝐱4 , 𝐱6)		
– 𝐬7 = R(𝐬6, 𝐱7) = R R R(𝐬3, 𝐱) , 𝐱4 , 𝐱6), 𝐱7)	
… and	so	on

29

Encodes	the	sequence	
upto t=4	into	a	single	
vector

Overview

1. Modeling	sequences

2. Recurrent	neural	networks:	An	abstraction

3. Usage	patterns	for	RNNs

4. BiDirectional RNNs

5. A	concrete	example:	The	Elman	RNN

6. The	vanishing	gradient	problem

7. Long	short-term	memory	units

2

What	can	we	do	with	such	an	abstraction?

1. The	encoder:	Convert	a	sequence	into	a	feature	vector	for	subsequent	classification

2. A	generator:	Produce	a	sequence	using	an	initial	state

3. A	transducer:	Convert	a	sequence	into	another	sequence

4. A	conditioned	generator	(or	an	encoder-decoder):	Combine	1	and	2

1.	An	Encoder

Convert	a	sequence	into	a	feature	vector	for	
subsequent	classification

4

I

Initial	
state

like cake

1.	An	Encoder

Convert	a	sequence	into	a	feature	vector	for	
subsequent	classification

5

I

Initial	
state

like cake

A	neural	network

1.	An	Encoder

Convert	a	sequence	into	a	feature	vector	for	
subsequent	classification

6

I

Initial	
state

like cake

A	neural	network

loss

1.	An	Encoder

Convert	a	sequence	into	a	feature	vector	for	
subsequent	classification

7

I

Initial	
state

like cake

A	neural	network

loss

Example:	Encode	a	sentence	or	a	phrase	into	a	feature	vector	for	a	classification	
task	such	as	sentiment	classification

2.	A	Generator

Produce	a	sequence	using	an	initial	state

8

∅

Initial	
state

∅ ∅

I like cake

2.	A	Generator

Produce	a	sequence	using	an	initial	state

9

∅

Initial	
state

∅ ∅

I like cake

loss

2.	A	Generator

Produce	a	sequence	using	an	initial	state

10

∅

Initial	
state

I like

I like cake

loss

Maybe	the	previous	output	becomes	the	current	input

2.	A	Generator

Produce	a	sequence	using	an	initial	state

11

∅

Initial	
state

I like

I like cake

loss

Examples:	Text	generation	tasks

3.	A	Transducer

Convert	a	sequence	into	another	sequence

12

I

Initial	
state

like cake

Pronoun Verb Noun

3.	A	Transducer

Convert	a	sequence	into	another	sequence

13

I

Initial	
state

like cake

Pronoun Verb Noun

loss

4.	Conditioned	generator

Or	an	encoder-decoder:	First	encode	a	sequence,	then	
generate	another	one

14

I

Initial	
state

like cake

First	encode	a	sequence

4.	Conditioned	generator

Or	an	encoder-decoder:	First	encode	a	sequence,	then	
generate	another	one

15

I

Initial	
state

like cake ∅ ∅ ∅

मला केक आवडतो

Then	decode	it	to	produce	a	different	sequence

4.	Conditioned	generator

Or	an	encoder-decoder:	First	encode	a	sequence,	then	
generate	another	one

16

I

Initial	
state

like cake ∅ ∅ ∅

मला केक आवडतो

Example:	A	building	block	for	neural	machine	translation

Stacking	RNNs

• A	commonly	seen	usage	pattern

• An	RNN	takes	an	input	sequence	and	produces	an	output	
sequence

• The	input	to	an	RNN	can	itself	be	the	output	of	an	RNN	–
stacked	RNNs,	also	called	deep	RNNs

• Two	or	more	layers	often	seems	to	improve	prediction	
performance

17

Overview

1. Modeling	sequences

2. Recurrent	neural	networks:	An	abstraction

3. Usage	patterns	for	RNNs

4. BiDirectional RNNs

5. A	concrete	example:	The	Elman	RNN

6. The	vanishing	gradient	problem

7. Long	short-term	memory	units

2

Why	left	to	right?

Everything	we	saw	so	far	models	sequences	(e.g.	words)	from	
left	to	right

Implicit	assumption:	If	we	want	to	represent	a	word	in	a	
sentence,	the	words	before	are	useful

Is	this	right?	

3

Why	left	to	right?

Everything	we	saw	so	far	models	sequences	(e.g.	words)	from	
left	to	right

Implicit	assumption:	If	we	want	to	represent	a	word	in	a	
sentence,	the	words	before	are	useful

Is	this	right?	Not	really

For	example:	For	a	sequence	labeling	task,	the	words	after	a	
target	word	may	also	be	useful	in	deciding	its	label	

How	do	we	address	this?

4

Bidirectional	RNNs

One	answer	(currently	the	most	popular	one):	Maintain	
two	separate	RNNs	– one	forward	and	one	reverse

5

[Schuster and Paliwal 1997]

BiRNN:	A	simple	example

6

John ate cake

The	forward	RNN

First,	the	forward	case.	We	
have	seen	this	before.

Forward

BiRNN:	A	simple	example

7

John ate cake

The	forward	RNN

John

start

First,	the	forward	case.	We	
have	seen	this	before.

This	computation	
graph	is	used	here

Forward

BiRNN:	A	simple	example

8

John ate cake

The	forward	RNN

John

start

ate

First,	the	forward	case.	We	
have	seen	this	before.

This	computation	
graph	is	used	here

Forward

BiRNN:	A	simple	example

9

John ate cake

The	forward	RNN

John

start

ate cake

First,	the	forward	case.	We	
have	seen	this	before.

This	computation	
graph	is	used	here

Forward

BiRNN:	A	simple	example

10

John ate cake

The	forward	RNN

John

start

ate cake

First,	the	forward	case.	We	
have	seen	this	before.

Output	at	
each	step

This	computation	
graph	is	used	here

Forward

BiRNN:	A	simple	example

11

John ate cake

The	forward	RNN

John

start

ate cake

Let’s	create	a	second	RNN,	this	
time	for	the	reverse	direction

The	reverse	RNN

Reverse

BiRNN:	A	simple	example

12

John ate cake

The	forward	RNN The	reverse	RNN

John

start

ate cake

Let’s	create	a	second	RNN,	this	
time	for	the	reverse	direction

start

Reverse

BiRNN:	A	simple	example

13

John ate cake

The	forward	RNN The	reverse	RNN

John

start

ate cake

Let’s	create	a	second	RNN,	this	
time	for	the	reverse	direction

start

This	computation	
graph	is	used	here

Reverse

BiRNN:	A	simple	example

14

John ate cake

The	forward	RNN The	reverse	RNN

John

start

ate cake

Let’s	create	a	second	RNN,	this	
time	for	the	reverse	direction

start

Concatenate	the	outputs	
at	each	step

Reverse

BiRNN:	A	simple	example	

15

John ate cake

The	forward	RNN The	reverse	RNN

John

start

ate cake

Let’s	create	a	second	RNN,	this	
time	for	the	reverse	direction

start

This	computation	
graph	is	used	here

Reverse

BiRNN:	A	simple	example

16

John ate cake

The	forward	RNN The	reverse	RNN

John

start

ate cake

Let’s	create	a	second	RNN,	this	
time	for	the	reverse	direction

start

Reverse

Concatenate	the	outputs	
at	each	step

BiRNN:	A	simple	example

17

John ate cake

The	forward	RNN The	reverse	RNN

John

start

ate cake

Let’s	create	a	second	RNN,	this	
time	for	the	reverse	direction

start

Reverse

BiRNN:	A	simple	example

18

John ate cake

The	forward	RNN The	reverse	RNN

John

start

ate cake

Let’s	create	a	second	RNN,	this	
time	for	the	reverse	direction

This	computation	
graph	is	used	here

start

Reverse

BiRNN:	A	simple	example

19

John ate cake

The	forward	RNN The	reverse	RNN

John

start

ate cake

Let’s	create	a	second	RNN,	this	
time	for	the	reverse	direction

start

Reverse

Concatenate	the	outputs	
at	each	step

BiRNN:	Putting	both	parts	together

20

John ate cake

The	forward	RNN The	reverse	RNN

John

start

ate cake

start

Another	way	of	seeing	this

21The	forward	RNN The	reverse	RNN

John John ate cake

start start

Concatenate	to	get	the	representation	for	the	word	
John	that	accounts	for	both	left	and	right	contexts

Another	way	of	seeing	this

22The	forward	RNN The	reverse	RNN

John ate ate cake

start start

Concatenate	to	get	the	representation	for	the	word	
ate that	accounts	for	both	left	and	right	contexts

Another	way	of	seeing	this

23The	forward	RNN The	reverse	RNN

John ate cake cake

start start

Concatenate	to	get	the	representation	for	the	word	
cake	that	accounts	for	both	left	and	right	contexts

A	Bidirectional	RNN

• Two	RNNs
– Forward,	defined	by	functions	𝑅"(𝐬%&'

" , 𝐱%) and	𝑂"(𝐬%)
– Backward,	defined	by	functions	𝑅,(𝐬%-', , 𝐱%) and	𝑂, 𝐬%

• The	𝑖%/ output	is	defined	by
𝐲1 = [𝑂" 𝐬%

" , 𝑂, 𝐬%,]

• Another	way	to	write	this
biRNN(𝐱'::, 𝑡) = [RNN" 𝐱':% , RNN, 𝐱::%]

24

A	Bidirectional	RNN

• Two	RNNs
– Forward,	defined	by	functions	𝑅"(𝐬%&'

" , 𝐱%) and	𝑂"(𝐬%)
– Backward,	defined	by	functions	𝑅,(𝐬%-', , 𝐱%) and	𝑂, 𝐬%

• The	𝑖%/ output	is	defined	by
𝐲1 = [𝑂" 𝐬%

" , 𝑂, 𝐬%,]

• Another	way	to	write	this
biRNN(𝐱'::, 𝑡) = [RNN" 𝐱':% , RNN, 𝐱::%]

25

A	Bidirectional	RNN

• Two	RNNs
– Forward,	defined	by	functions	𝑅"(𝐬%&'

" , 𝐱%) and	𝑂"(𝐬%)
– Backward,	defined	by	functions	𝑅,(𝐬%-', , 𝐱%) and	𝑂, 𝐬%

• The	𝑖%/ output	is	defined	by
𝐲1 = [𝑂" 𝐬%

" , 𝑂, 𝐬%,]

• Another	way	to	write	this
biRNN(𝐱'::, 𝑡) = [RNN" 𝐱':% , RNN, 𝐱::%]

26

BiRNNs:	Summary

• Allows	capturing	both	left	and	right	contexts

• Commonly	used	today	as	a	base	encoding	layer	for	a	
variety	of	NLP	tasks
– Often	stacked

• Specific	versions	of	RNNs	give	us	different	BiRNNs
– BiLSTMs or	BiGRUs are	typically	used

27

Overview

1. Modeling	sequences

2. Recurrent	neural	networks:	An	abstraction

3. Usage	patterns	for	RNNs

4. BiDirectional RNNs

5. A	concrete	example:	The	Elman	RNN

6. The	vanishing	gradient	problem

7. Long	short-term	memory	units

2

A	simple	RNN

• What	we	saw	so	far	is	just	a	template	for	a	recurrent	
neural	network
– Did	not	specify	what	the	functions	inside	it	are

• Let’s	look	at	a	simple	instantiation,	first	introduced	
by	Elman	1990

3

A	simple	RNN	

At	each	step,	an	RNN:
– Computes	the	next	cell	state:	𝐬" = R(𝐬"&', 𝐱")
– Computes	the	output:	𝒚" = O(𝐬")

Need	to	specify	two	functions:
1. How	to	generate	the	current	state	using	the	previous	

state	and	the	current	input?

2. How	to	generate	the	current	output	using	the	current	
state?
The	output	is	the	state.	That	is,	𝒚" = 𝐬"

4

A	simple	RNN	

At	each	step,	an	RNN:
– Computes	the	next	cell	state:	𝐬" = R(𝐬"&', 𝐱")
– Computes	the	output:	𝒚" = O(𝐬")

Need	to	specify	two	functions:
1. How	to	generate	the	current	state	using	the	previous	

state	and	the	current	input?

2. How	to	generate	the	current	output	using	the	current	
state?
The	output	is	the	state.	That	is,	𝒚" = 𝐬"

5

Computing	the	value	of	a	state

6

𝐬"&' 𝐱"

1. How	to	generate	the	current	state	using	the	previous	state	and	the	current	input?

The	previous	state
A	vector	in	ℜ./

The	current	input	
A	vector	in	ℜ.

Computing	the	value	of	a	state

7

𝐬"&' 𝐖1

𝐬"&'𝐖1

𝐱"

1. How	to	generate	the	current	state	using	the	previous	state	and	the	current	input?

The	previous	state
A	vector	in	ℜ./

The	current	input	
A	vector	in	ℜ.

∈ ℜ./×./

∈ ℜ./
multiply

Computing	the	value	of	a	state

8

𝐬"&' 𝐖1

𝐬"&'𝐖1

𝐱" 𝐖4

𝐱"𝐖5

1. How	to	generate	the	current	state	using	the	previous	state	and	the	current	input?

The	previous	state
A	vector	in	ℜ./

The	current	input	
A	vector	in	ℜ.

∈ ℜ./×.∈ ℜ./×./

∈ ℜ./∈ ℜ./
multiply

Computing	the	value	of	a	state

9

𝐛

𝐬"&' 𝐖1

𝐬"&'𝐖1

𝐱" 𝐖4

𝐱"𝐖5

+

1. How	to	generate	the	current	state	using	the	previous	state	and	the	current	input?

The	previous	state
A	vector	in	ℜ./

The	current	input	
A	vector	in	ℜ.

∈ ℜ./

∈ ℜ./×.∈ ℜ./×./

∈ ℜ./∈ ℜ./

A	bias	vector

𝐬"&'𝐖8	 + 𝐱"𝐖4 + 𝐛	

Computing	the	value	of	a	state

10

𝐛

𝐬"&' 𝐖1

𝐬"&'𝐖1

𝐱" 𝐖4

𝐱"𝐖5

+

𝑔

1. How	to	generate	the	current	state	using	the	previous	state	and	the	current	input?

The	previous	state
A	vector	in	ℜ./

The	current	input	
A	vector	in	ℜ.

∈ ℜ./

∈ ℜ./×.∈ ℜ./×./

∈ ℜ./∈ ℜ./

A	non-linearity.	
Typically,	a	
tanh	or	ReLU

A	bias	vector

𝑔(𝐬"&'𝐖8	 + 𝐱"𝐖4 + 𝐛)	

Computing	the	value	of	a	state

11

𝐬"

𝐛

𝐬"&' 𝐖1

𝐬"&'𝐖1

𝐱" 𝐖4

𝐱"𝐖5

+

𝑔

1. How	to	generate	the	current	state	using	the	previous	state	and	the	current	input?

The	previous	state
A	vector	in	ℜ./

The	current	input	
A	vector	in	ℜ.

∈ ℜ./

∈ ℜ./

∈ ℜ./×.∈ ℜ./×./

∈ ℜ./∈ ℜ./

A	non-linearity.	
Typically,	a	
tanh	or	ReLU

A	bias	vector

Next	state	𝐬" = 𝑔(𝐬"&'𝐖8	 + 𝐱"𝐖4 + 𝐛)	

A	simple	RNN	

At	each	step,	an	RNN:
– Computes	the	next	cell	state:	𝐬" = R(𝐬"&', 𝐱")
– Computes	the	output:	𝒚" = O(𝐬")

Need	to	specify	two	functions:
1. How	to	generate	the	current	state	using	the	previous	

state	and	the	current	input?

2. How	to	generate	the	current	output	using	the	current	
state?
The	output	is	the	state.	That	is,	𝒚" = 𝐬"

12

A	simple	RNN	

At	each	step,	an	RNN:
– Computes	the	next	cell	state:	𝐬" = R(𝐬"&', 𝐱")
– Computes	the	output:	𝒚" = O(𝐬")

Need	to	specify	two	functions:
1. How	to	generate	the	current	state	using	the	previous	

state	and	the	current	input?

2. How	to	generate	the	current	output	using	the	current	
state?
The	output	is	the	state.	That	is,	𝒚" = 𝐬"

13

Next	state	𝐬" = 𝑔(𝐬"&'𝐖8	 + 𝐱"𝐖4 + 𝐛)	

The	Elman	RNN

14

The	Elman	RNN

15

𝐛

𝐬"&' 𝐖1

𝐬"&'𝐖1

𝐱" 𝐖4

𝐱"𝐖5

+

𝑔

Prev.	
state

Current	input

The	Elman	RNN

16

𝐛

𝐬"&' 𝐖1

𝐬"&'𝐖1

𝐱" 𝐖4

𝐱"𝐖5

+

𝑔

Prev.	
state

Current	input

Output

Next	
state

