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of	decisions	needed	to	construct	the	tree
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And	we	can	get	very	creative	with	such	encodings
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Noun Verb Preposition Noun Noun Noun

Example:	We	can	encode	parse	trees	as	a	sequence	
of	decisions	needed	to	construct	the	tree
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Natural	question:	How	do	we	model	sequential	inputs	and	outputs?

More	concretely,	we	need	a	mechanism	that	allows	us	to

1. Capture	sequential	dependencies	between	inputs

2. Model	uncertainty	over	sequential	outputs



Modeling	sequences:	The	problem

Suppose	we	want	to	build	a	language	model	that	
computes	the	probability	of	sentences

We	can	write	the	probability	as	

𝑃 𝑥#, 𝑥%, 𝑥&,⋯ , 𝑥( =*𝑃(𝑥, ∣ 𝑥#, 𝑥% ⋯ , 𝑥,.#)
�

,
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It	was	a	bright	cold	day	in	April.

Example:	A	Language	model	
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A	history-based	model

• Each	token	is	dependent	on	all	the	tokens	that	came	
before	it
– Simple	conditioning
– Each	P(xi |	…)	is	a	multinomial	probability	distribution	over	the	

tokens

• What	is	the	problem	here?
– How	many	parameters	do	we	have?	

• Grows	with	the	size	of	the	sequence!
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The	traditional	solution:	Lose	the	history

Make	a	modeling	assumption

Example:	The	first	order	Markov	model	assumes	that
𝑃	 𝑥, 𝑥#, 𝑥%,⋯ , 𝑥,.# = 𝑃(𝑥, ∣ 𝑥,.#)

This	allows	us	to	simplify	

𝑃 𝑥#, 𝑥%, 𝑥&,⋯ , 𝑥( =*𝑃(𝑥, ∣ 𝑥#, 𝑥% ⋯ , 𝑥,.#)
�

,
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Example:	Another	language	model

It	was	a	bright	cold	day	in	April
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Probability	of	a	word	following	“a”
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Probability	of	a	word	starting	a	sentence

Probability	of	a	word	following	“It”
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If	there	are	K	tokens/states,	how	many	parameters	
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Can	we	do	better?

• Can	we	capture	the	meaning	of	the	entire	history	
without	arbitrarily	growing	the	number	of	parameters?

• Or	equivalently,	can	we	discard	the	Markov	assumption?

• Can	we	represent	arbitrarily	long	sequences	as	fixed	
sized	vectors?	
– Perhaps	to	provide	features	for	subsequent	classification

• Answer:	Recurrent	neural	networks	(RNNs)
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