
CS	6956:	Deep	Learning	for	NLP

Recurrent	Neural	Networks

Overview

1. Modeling	sequences

2. Recurrent	neural	networks:	An	abstraction

3. Usage	patterns	for	RNNs

4. BiDirectional RNNs

5. A	concrete	example:	The	Elman	RNN

6. The	vanishing	gradient	problem

7. Long	short-term	memory	units

1

Overview

1. Modeling	sequences

2. Recurrent	neural	networks:	An	abstraction

3. Usage	patterns	for	RNNs

4. BiDirectional RNNs

5. A	concrete	example:	The	Elman	RNN

6. The	vanishing	gradient	problem

7. Long	short-term	memory	units

2

Sequences	abound	in	NLP

3

S a l t 	 L a k e 	 C i t y

Words	are	sequences	of	characters

Sequences	abound	in	NLP

4

S a l t 	 L a k e 	 C i t y

John lives in Salt Lake City

Sentences	are	sequences	of	words

Sequences	abound	in	NLP

5

S a l t 	 L a k e 	 C i t y

John lives in Salt Lake City

Paragraphs	are	sequences	of	sentences

John	lives	in	Salt	Lake	City. He	enjoys	hiking	with	his	dog. His	cat	hates	hiking.

Sequences	abound	in	NLP

6

S a l t 	 L a k e 	 C i t y

John lives in Salt Lake City

And	so	on… inputs	are	naturally	sequences	at	different	levels

John	lives	in	Salt	Lake	City. He	enjoys	hiking	with	his	dog. His	cat	hates	hiking.

Sequences	abound	in	NLP

7

S a l t 	 L a k e 	 C i t y

John lives in Salt Lake City

Outputs	can	also	be	sequences

John	lives	in	Salt	Lake	City. He	enjoys	hiking	with	his	dog. His	cat	hates	hiking.

Sequences	abound	in	NLP

8

S a l t 	 L a k e 	 C i t y

John lives in Salt Lake City

Part-of-speech	tags	form	a	sequence

John	lives	in	Salt	Lake	City. He	enjoys	hiking	with	his	dog. His	cat	hates	hiking.

John lives in Salt Lake City

Sequences	abound	in	NLP

9

S a l t 	 L a k e 	 C i t y

John lives in Salt Lake City

Part-of-speech	tags	form	a	sequence

John	lives	in	Salt	Lake	City. He	enjoys	hiking	with	his	dog. His	cat	hates	hiking.

John lives in Salt Lake City

Noun Verb Preposition Noun Noun Noun

Sequences	abound	in	NLP

10

S a l t 	 L a k e 	 C i t y

John lives in Salt Lake City

Even	things	that	don’t	look	like	a	sequence	can	be	made	to	look	like	one

John	lives	in	Salt	Lake	City. He	enjoys	hiking	with	his	dog. His	cat	hates	hiking.

John lives in Salt Lake City

Noun Verb Preposition Noun Noun Noun

Person Location

Example:	Named	entity	tags

Sequences	abound	in	NLP

11

S a l t 	 L a k e 	 C i t y

John lives in Salt Lake City

Even	things	that	don’t	look	like	a	sequence	can	be	made	to	look	like	one

John	lives	in	Salt	Lake	City. He	enjoys	hiking	with	his	dog. His	cat	hates	hiking.

John lives in Salt Lake City

Noun Verb Preposition Noun Noun Noun

Example:	Named	entity	tags

B-PER O O B-LOC I-LOC I-LOC

Sequences	abound	in	NLP

12

S a l t 	 L a k e 	 C i t y

John lives in Salt Lake City

And	we	can	get	very	creative	with	such	encodings

John	lives	in	Salt	Lake	City. He	enjoys	hiking	with	his	dog. His	cat	hates	hiking.

Noun Verb Preposition Noun Noun Noun

Example:	We	can	encode	parse	trees	as	a	sequence	
of	decisions	needed	to	construct	the	tree

B-PER O O B-LOC I-LOC I-LOC

Sequences	abound	in	NLP

13

S a l t 	 L a k e 	 C i t y

John lives in Salt Lake City

And	we	can	get	very	creative	with	such	encodings

John	lives	in	Salt	Lake	City. He	enjoys	hiking	with	his	dog. His	cat	hates	hiking.

Noun Verb Preposition Noun Noun Noun

Example:	We	can	encode	parse	trees	as	a	sequence	
of	decisions	needed	to	construct	the	tree

B-PER O O B-LOC I-LOC I-LOC

Natural	question:	How	do	we	model	sequential	inputs	and	outputs?

Sequences	abound	in	NLP

14

S a l t 	 L a k e 	 C i t y

John lives in Salt Lake City

And	we	can	get	very	creative	with	such	encodings

John	lives	in	Salt	Lake	City. He	enjoys	hiking	with	his	dog. His	cat	hates	hiking.

Noun Verb Preposition Noun Noun Noun

Example:	We	can	encode	parse	trees	as	a	sequence	
of	decisions	needed	to	construct	the	tree

B-PER O O B-LOC I-LOC I-LOC

Natural	question:	How	do	we	model	sequential	inputs	and	outputs?

More	concretely,	we	need	a	mechanism	that	allows	us	to

1. Capture	sequential	dependencies	between	inputs

2. Model	uncertainty	over	sequential	outputs

Modeling	sequences:	The	problem

Suppose	we	want	to	build	a	language	model	that	
computes	the	probability	of	sentences

We	can	write	the	probability	as	

𝑃 𝑥#, 𝑥%, 𝑥&,⋯ , 𝑥(=*𝑃(𝑥, ∣ 𝑥#, 𝑥% ⋯ , 𝑥,.#)
�

,

15

It	was	a	bright	cold	day	in	April.

Example:	A	Language	model	

16

It	was	a	bright	cold	day	in	April.

Probability	of	a	word	starting	a	sentence

Example:	A	Language	model	

17

It	was	a	bright	cold	day	in	April.

Probability	of	a	word	starting	a	sentence

Probability	of	a	word	following	“It”

Example:	A	Language	model	

18

It	was	a	bright	cold	day	in	April.

Probability	of	a	word	starting	a	sentence

Probability	of	a	word	following	“It”

Example:	A	Language	model	

19

Probability	of	a	word	following	“It	was”

It	was	a	bright	cold	day	in	April.

Probability	of	a	word	starting	a	sentence

Probability	of	a	word	following	“It”

Example:	A	Language	model	

20

Probability	of	a	word	following	“It	was”

Probability	of	a	word	following	“It	was	a”

It	was	a	bright	cold	day	in	April.

Probability	of	a	word	starting	a	sentence

Probability	of	a	word	following	“It”

Probability	of	a	word	following	“It	was”

Probability	of	a	word	following	“It	was	a”

Example:	A	Language	model	

21

A	history-based	model

• Each	token	is	dependent	on	all	the	tokens	that	came	
before	it
– Simple	conditioning
– Each	P(xi |	…)	is	a	multinomial	probability	distribution	over	the	

tokens

• What	is	the	problem	here?
– How	many	parameters	do	we	have?	

• Grows	with	the	size	of	the	sequence!

22

A	history-based	model

• Each	token	is	dependent	on	all	the	tokens	that	came	
before	it
– Simple	conditioning
– Each	P(xi |	…)	is	a	multinomial	probability	distribution	over	the	

tokens

• What	is	the	problem	here?
– How	many	parameters	do	we	have?	

• Grows	with	the	size	of	the	sequence!

23

The	traditional	solution:	Lose	the	history

Make	a	modeling	assumption

Example:	The	first	order	Markov	model	assumes	that
𝑃	 𝑥, 𝑥#, 𝑥%,⋯ , 𝑥,.# = 𝑃(𝑥, ∣ 𝑥,.#)

This	allows	us	to	simplify	

𝑃 𝑥#, 𝑥%, 𝑥&,⋯ , 𝑥(=*𝑃(𝑥, ∣ 𝑥#, 𝑥% ⋯ , 𝑥,.#)
�

,

24

The	traditional	solution:	Lose	the	history

Make	a	modeling	assumption

Example:	The	first	order	Markov	model	assumes	that
𝑃	 𝑥, 𝑥#, 𝑥%,⋯ , 𝑥,.# = 𝑃(𝑥, ∣ 𝑥,.#)

This	allows	us	to	simplify	

𝑃 𝑥#, 𝑥%, 𝑥&,⋯ , 𝑥(=*𝑃(𝑥, ∣ 𝑥#, 𝑥% ⋯ , 𝑥,.#)
�

,

25

These	dependencies	are	ignored

The	traditional	solution:	Lose	the	history

Make	a	modeling	assumption

Example:	The	first	order	Markov	model	assumes	that
𝑃	 𝑥, 𝑥#, 𝑥%,⋯ , 𝑥,.# = 𝑃(𝑥, ∣ 𝑥,.#)

This	allows	us	to	simplify	

𝑃 𝑥#, 𝑥%, 𝑥&,⋯ , 𝑥(=*𝑃(𝑥, ∣ 𝑥,.#)
�

,

26

Example:	Another	language	model

It	was	a	bright	cold	day	in	April

27

Probability	of	a	word	starting	a	sentence

Probability	of	a	word	following	“It”

Probability	of	a	word	following	“was”

Probability	of	a	word	following	“a”

Example:	Another	language	model

It	was	a	bright	cold	day	in	April

28

Probability	of	a	word	starting	a	sentence

Probability	of	a	word	following	“It”

Probability	of	a	word	following	“was”

Probability	of	a	word	following	“a”

If	there	are	K	tokens/states,	how	many	parameters	
do	we	need?	

Example:	Another	language	model

It	was	a	bright	cold	day	in	April

29

Probability	of	a	word	starting	a	sentence

Probability	of	a	word	following	“It”

Probability	of	a	word	following	“was”

Probability	of	a	word	following	“a”

If	there	are	K	tokens/states,	how	many	parameters	
do	we	need?	 O(K2)

Can	we	do	better?

• Can	we	capture	the	meaning	of	the	entire	history	
without	arbitrarily	growing	the	number	of	parameters?

• Or	equivalently,	can	we	discard	the	Markov	assumption?

• Can	we	represent	arbitrarily	long	sequences	as	fixed	
sized	vectors?	
– Perhaps	to	provide	features	for	subsequent	classification

• Answer:	Recurrent	neural	networks	(RNNs)

30

Can	we	do	better?

• Can	we	capture	the	meaning	of	the	entire	history	
without	arbitrarily	growing	the	number	of	parameters?

• Or	equivalently,	can	we	discard	the	Markov	assumption?

• Can	we	represent	arbitrarily	long	sequences	as	fixed	
sized	vectors?	
– Perhaps	to	provide	features	for	subsequent	classification

• Answer:	Recurrent	neural	networks	(RNNs)

31

Can	we	do	better?

• Can	we	capture	the	meaning	of	the	entire	history	
without	arbitrarily	growing	the	number	of	parameters?

• Or	equivalently,	can	we	discard	the	Markov	assumption?

• Can	we	represent	arbitrarily	long	sequences	as	fixed	
sized	vectors?	
– Perhaps	to	provide	features	for	subsequent	classification

• Answer:	Recurrent	neural	networks	(RNNs)

32

