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Language is complicated! 
Dependency parsing can help 

clarify what is connected to what
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From slides on 3/25

3



What is a dependency 
grammar?

• Dependency: a relation between two words, where one is 
the head and the other is the dependent


• Every word depends on exactly one other word (except 
for the root word)


• Build a dependency tree by determining which word every 
word depends on


• Normally binary asymmetric relations
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How dependency parses 
work

• Tree


• Every word has exactly one parent (one edge pointing to it)


• Label edges to indicate the head → modifier relations 

• Usually one word is the root


• Don’t want cycles
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Important relations (for 
English)

• (Nominal) Subject


• Direct Object


• Determiner


• Adjective Modifier


• Adverbial Modifier


• etc.
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Important relations (for 
English)

• There are many different flavors of dependency parses.


• Stanford Dependencies; 
Universal Dependencies (UDv1, UDv2); …


• Some differences in structure (head rules)


• Different relation label sets


• Examples on different slides use different flavors.


• For this class, the particular framework is not important.
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Example of language being 
complicated: 

“I saw a girl with a telescope”
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I saw a girl with a telescope

with = having with = using

Image from https://www.cellstrat.com/
2020/04/16/dependency-parsing-for-nlp/9



With can connect to seeing or to the 
girl: two separate dependency parses

Which is with as in “using”?

prep

detnsubj

root

det

dobj

I      saw     a            girl     with        a     telescope

pobj

prep

detnsubj

root

pobj

det

dobj

I      saw     a            girl     with        a     telescope
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With as in using— “with a telescope” modifies “saw”

prep

detnsubj

root

det

dobj

I      saw     a            girl     with        a     telescope

pobj

prep

detnsubj

root

pobj

det

dobj

I      saw     a            girl     with        a     telescope

With as in having— “with a telescope” modifies “girl”
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Dependency parsing is 
useful

• Resolves attachment ambiguities that can matter for 
meaning


• Grammatical structure of a sentence based on the 
relationships (dependencies) between the words


• Syntactic dependencies can be close to semantic relations


• Language agnostic


• For what types of tasks might this be useful?
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Information Extraction
• Can be used in information extraction to capture relationships


• Entity linking: maps entities to database entries


• Relation extraction: mines text to find relationships between 
entities
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Machine Translation
• When incorporated as linguistic prior during training into neural 

machine translation, improves performance


• https://www.aclweb.org/anthology/P17-2012/


• (Not standard practice to incorporate dependencies in MT)
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Before we try it 
ourselves, some details 

on edges & heads
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Can arrows cross? 
Projectivity

• A dependency parse is projective if every subtree is a 
contiguous span of the sentence


• i.e. Projective = there are no crossing edges 

Is this tree projective?
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How about this one?

• A dependency parse is projective if every subtree is a 
contiguous span of the sentence


• i.e. Projective = there are no crossing edges 

Can arrows cross? 
Projectivity
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Heads
• Some dependency parse flavors prioritize content words 

as heads (auxiliaries, prepositions, etc. are modifiers)


• Other flavors use functional heads (prepositions head 
their objects, auxiliaries head main verbs, …)

prep / case

nmod

prep pobj

aux
nsubj

nsubj
vcomp
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Let’s try one

The               dog             bit             the           boy

1. Root?
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Let’s try one

The               dog             bit             the           boy

Root
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Let’s try one

The               dog             bit             the           boy

Root

2. Relation to dog?
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Let’s try one

The               dog             bit             the           boy

Root

nsubj

22



Let’s try one

The               dog             bit             the           boy

Root

nsubj

3. Dog’s relation to the?
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Let’s try one

The               dog             bit             the           boy

Root

nsubjdet
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Let’s try one

The               dog             bit             the           boy

Root

nsubjdet

4. Should bit be a parent of “the” or “boy”? Relation? 
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Let’s try one

The               dog             bit             the           boy

Root

nsubjdet

dobj
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Let’s try one

The               dog             bit             the           boy

Root

nsubjdet

dobj

5. Relation between “Boy” and “the”
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Let’s try one

The               dog             bit             the           boy

Root

nsubjdet

dobj

det
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Transition-based Parsing 
(sort of tricky, part of A5)
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Transition-based Parsing

• Process words from left to right, deciding if the two words 
should be attached 


• Builds a dependency parse using a stack and buffer


• Input buffer: words of the sentence


• Stack: to manipulate the words


• Dependency relations: list of relations that culminate 
in the dependency parse
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[STACK]


[root]

[INPUT BUFFER]


[these, are, words, in, a, 
sentence]

[RELATIONS]

Create a dependency between ‘root’ 
and the word after ‘root’ on the stack 

if the word on the stack IS the root
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Arc-Standard Approach
• Build relations between words using ARCS and remove word from stack 

once you have identified the word’s parent


• LEFTARC: the word at the top of the stack is the head of the word 
beneath it


• Remove second word from stack (the word you just made a 
dependent of the top word)


• RIGHTARC: (the reverse) the second word on the stack is the head of 
the word on top of the stack


• Remove top word from stack


• SHIFT: move the word from input buffer to the stack
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Arc-Standard Approach

• Note: The root cannot be a dependent, so LEFTARC 
cannot be applied when the root is the second word in 
the stack


• There must be at least 2 words in the stack to apply 
LEFTARC or RIGHTARC
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Example of transition-based 
parsing

She               gave             me          the           book

Root

nsubj

dobj

det
iobj
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[STACK]


[root]


[INPUT BUFFER]


[She, gave, me, the, book]


[RELATIONS]
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[STACK]


[root]


[INPUT BUFFER]


[She, gave, me, the, book]


[RELATIONS]

We need more words in the stack: SHIFT
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[STACK]


[root]


[root, She]


[INPUT BUFFER]


[She, gave, me, the, book]


[gave, me, the book]


[RELATIONS]

S
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[STACK]


[root]


[root, She]


[INPUT BUFFER]


[She, gave, me, the, book]


[gave, me, the, book]


[RELATIONS]

She is not the root, We need more words in the stack: SHIFT

S
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[STACK]


[root]


[root, She]


[root, She, gave]


[INPUT BUFFER]


[She, gave, me, the, book]


[gave, me, the, book]


[me, the, book]


[RELATIONS]

S

S
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[STACK]


[root]


[root, She]


[root, She, gave]


[INPUT BUFFER]


[She, gave, me, the, book]


[gave, me, the, book]


[me, the, book]


[RELATIONS]

Gave is the head of She.  
Word on top of stack is head of second word on stack: LEFTARC 

Remove She from stack and add relation. No change to input buffer 

S

S
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[STACK]


[root]


[root, She]


[root, She, gave]


[root, gave]


[INPUT BUFFER]


[She, gave, me, the, book]


[gave, me, the, book]


[me, the, book]


[me, the, book]


[RELATIONS]


(She <- gave)


S

S

LA
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[STACK]


[root]


[root, She]


[root, She, gave]


[root, gave]


[INPUT BUFFER]


[She, gave, me, the, book]


[gave, me, the, book]


[me, the, book]


[me, the, book]


[RELATIONS]


(She <- gave)


Gave is the root. We don’t want to remove it from the stack yet because we need to 
build more relations with the word. So, instead of building an ARC right now between 

root and gave, we SHIFT

S

S

LA
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[STACK]


[root]


[root, She]


[root, She, gave]


[root, gave]


[root, gave, me]


[INPUT BUFFER]


[She, gave, me, the, book]


[gave, me, the, book]


[me, the, book]


[me, the, book]


[the, book]


[RELATIONS]


(She <- gave)


S

S

LA

S
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[STACK]


[root]


[root, She]


[root, She, gave]


[root, gave]


[root, gave, me]


[INPUT BUFFER]


[She, gave, me, the, book]


[gave, me, the, book]


[me, the, book]


[me, the, book]


[the, book]


[RELATIONS]


(She <- gave)


Gave is the head of me. RIGHTARC 

Remove second word from stack, add relation, no change to input buffer. 

S

S

LA

S
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[STACK]


[root]


[root, She]


[root, She, gave]


[root, gave]


[root, gave, me]


[root, gave]


[INPUT BUFFER]


[She, gave, me, the, book]


[gave, me, the, book]


[me, the, book]


[me, the, book]


[the, book]


[the, book]


[RELATIONS]


(She <- gave)


(gave -> me)


S

S

LA

RA

S
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[STACK]


[root]


[root, She]


[root, She, gave]


[root, gave]


[root, gave, me]


[root, gave]


[INPUT BUFFER]


[She, gave, me, the, book]


[gave, me, the, book]


[me, the, book]


[me, the, book]


[the, book]


[the, book]


[RELATIONS]


(She <- gave)


(gave -> me)


Still don’t want to get rid of ‘gave’ 

SHIFT 

S

S

LA

RA

S
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[STACK]


[root]


[root, She]


[root, She, gave]


[root, gave]


[root, gave, me]


[root, gave]


[root, gave, the]


[INPUT BUFFER]


[She, gave, me, the, book]


[gave, me, the, book]


[me, the, book]


[me, the, book]


[the, book]


[the, book]


[book]


[RELATIONS]


(She <- gave)


(gave -> me)


S

S

LA

RA

S

S
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[STACK]


[root]


[root, She]


[root, She, gave]


[root, gave]


[root, gave, me]


[root, gave]


[root, gave, the]


[INPUT BUFFER]


[She, gave, me, the, book]


[gave, me, the, book]


[me, the, book]


[me, the, book]


[the, book]


[the, book]


[book]


[RELATIONS]


(She <- gave)


(gave -> me)


Any relation between ‘gave’ and ‘the’? 

No. 

SHIFT 

S

S

LA

RA

S

S
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[STACK]


[root]


[root, She]


[root, She, gave]


[root, gave]


[root, gave, me]


[root, gave]


[root, gave, the]


[root, gave, the, book]


[INPUT BUFFER]


[She, gave, me, the, book]


[gave, me, the, book]


[me, the, book]


[me, the, book]


[the, book]


[the, book]


[book]


[ ]


[RELATIONS]


(She <- gave)


(gave -> me)


S

S

LA

RA

S

S

S
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[STACK]


[root]


[root, She]


[root, She, gave]


[root, gave]


[root, gave, me]


[root, gave]


[root, gave, the]


[root, gave, the, book]


[INPUT BUFFER]


[She, gave, me, the, book]


[gave, me, the, book]


[me, the, book]


[me, the, book]


[the, book]


[the, book]


[book]


[ ]


[RELATIONS]


(She <- gave)


(gave -> me)


‘Book’ is head of ‘the’: LEFTARC

S

S

LA

RA

S

S

S

50



[STACK]


[root]


[root, She]


[root, She, gave]


[root, gave]


[root, gave, me]


[root, gave]


[root, gave, the]


[root, gave, the, book]


[root, gave, book]


[INPUT BUFFER]


[She, gave, me, the, book]


[gave, me, the, book]


[me, the, book]


[me, the, book]


[the, book]


[the, book]


[book]


[ ]


[RELATIONS]


(She <- gave)


(gave -> me)


(the <- book)


S

S

LA

RA

S

S

S

LA
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[STACK]


[root]


[root, She]


[root, She, gave]


[root, gave]


[root, gave, me]


[root, gave]


[root, gave, the]


[root, gave, the, book]


[root, gave, book]


[INPUT BUFFER]


[She, gave, me, the, book]


[gave, me, the, book]


[me, the, book]


[me, the, book]


[the, book]


[the, book]


[book]


[ ]


[RELATIONS]


(She <- gave)


(gave -> me)


(the <- book)


‘Gave’ is head of ‘book’: RIGHTARC

S

S

LA

RA

S

S

S

LA
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[STACK]


[root]


[root, She]


[root, She, gave]


[root, gave]


[root, gave, me]


[root, gave]


[root, gave, the]


[root, gave, the, book]


[root, gave, book]


[root, gave]


[INPUT BUFFER]


[She, gave, me, the, book]


[gave, me, the, book]


[me, the, book]


[me, the, book]


[the, book]


[the, book]


[book]


[ ]


[RELATIONS]


(She <- gave)


(gave -> me)


(the <- book)


(gave -> book)


S

S

LA

RA

S

S

S

LA

RA
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[STACK]


[root]


[root, She]


[root, She, gave]


[root, gave]


[root, gave, me]


[root, gave]


[root, gave, the]


[root, gave, the, book]


[root, gave, book]


[root, gave]


[INPUT BUFFER]


[She, gave, me, the, book]


[gave, me, the, book]


[me, the, book]


[me, the, book]


[the, book]


[the, book]


[book]


[ ]


[RELATIONS]


(She <- gave)


(gave -> me)


(the <- book)


(gave -> book)
No more words left in buffer, 
can finally add ARC between 

root and gave: RIGHTARC

S

S

LA

RA

S

S

S

LA

RA
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[STACK]


[root]


[root, She]


[root, She, gave]


[root, gave]


[root, gave, me]


[root, gave]


[root, gave, the]


[root, gave, the, book]


[root, gave, book]


[root, gave]


[root]

[INPUT BUFFER]


[She, gave, me, the, book]


[gave, me, the, book]


[me, the, book]


[me, the, book]


[the, book]


[the, book]


[book]


[ ]


[RELATIONS]


(She <- gave)


(gave -> me)


(the <- book)


(gave -> book)


(root -> gave)

S

S

LA

RA

S

S

S

LA

RA

RA
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[STACK]


[root]


[root, She]


[root, She, gave]


[root, gave]


[root, gave, me]


[root, gave]


[root, gave, the]


[root, gave, the, book]


[root, gave, book]


[root, gave]


[root]

[INPUT BUFFER]


[She, gave, me, the, book]


[gave, me, the, book]


[me, the, book]


[me, the, book]


[the, book]


[the, book]


[book]


[ ]


[RELATIONS]


(She <- gave)


(gave -> me)


(the <- book)


(gave -> book)


(root -> gave)

S

S

LA

RA

S

S

S

LA

RA

RA

We have (exactly) encoded the parse tree as a sequence 
of {S, LA, RA} actions! 

(Would also need to specify relation labels in the LA, RA 
actions or post hoc.) 

Transition-based parsing = iteratively: 
 (1) consult the Oracle (algorithm giving next action) 
(2) modify the Configuration (state of stack, buffer, 

relations) according to the action
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Arc-Standard Parsing
With the 3 Arc-Standard actions {S, LA, RA}:


☞  How many transitions to parse a sentence of N words?


‣ 2*N: for each word, once to shift + once to attach to a head and remove from 
stack (LA or RA).


☞  Can these 3 types of actions build any tree?


‣ Only projective trees: only adding edges at the top of the stack & permanently 
removing a word from the stack once attaching it to its parent ensures that all 
subtrees are contiguous


‣ With a richer set of actions, can get non-projective trees or even graphs


☞  How would you implement an Oracle (choose the next action at test time)?


‣ This brings us to…
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Statistical 
Dependency Parsing
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Statistical Dependency 
Parsing

• Can be done by training a classifier to predict each 
action, using data from Treebanks


• Neural Networks, SVM, logistic regression


• Advanced Methods: Arc Eager transition system


• MaltParser: linear time parsing, predicted by a 
discriminative classifier


• Possible features? POS tags, word at the top of the 
stack, etc. — we’ll come back to this in a second

59



Training

• Can automatically convert constituency treebanks (like 
the Penn Treebank) to dependencies
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Training
• Or, can use dependency treebanks like Universal Dependencies (available 

in many languages)


• http://universaldependencies.org 

Image from https://universaldependencies.org/
introduction.html61

http://universaldependencies.org
https://universaldependencies.org/introduction.html
https://universaldependencies.org/introduction.html
https://universaldependencies.org/introduction.html


Evaluation
• Comparing against a gold standard:


• Accuracy = # correct dependencies / # of 
dependencies 

• Unlabeled Attachment Score (UAS): % of words 
attached correctly (correct head)


• Labeled Attached Score (LAS): % of words 
attached to the correct head with the correct relation 
label
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Conventional Feature 
Representation

Image from Chris Manning’s Stanford NLP slides

• Sparse vector


• Train classifier on these vectors63



Why train a neural 
dependency parser?

• Problems with conventional way:


• Sparse


• Incomplete


• Expensive computation


• Instead, you can learn a dense and compact feature 
representation (like word2vec)
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Neural dependency parsing
• Chen and Manning 2014: https://www.aclweb.org/anthology/

D14-1082/


• Represents words as d-dimensional dense vectors (word embeddings!)

Image from Chris Manning’s Stanford NLP slides65

https://www.aclweb.org/anthology/D14-1082/
https://www.aclweb.org/anthology/D14-1082/


Further developments in 
neural dependency parsing

Slide from Chris Manning’s Stanford NLP slides66



Biaffine Parser
• A neural model a lot of people start with now is  

Dozat & Manning (2017)


• https://arxiv.org/abs/1611.01734

Published as a conference paper at ICLR 2017

English PTB-SD 3.3.0 Chinese PTB 5.1
Type Model UAS LAS UAS LAS

Transition
Ballesteros et al. (2016) 93.56 91.42 87.65 86.21
Andor et al. (2016) 94.61 92.79 – –
Kuncoro et al. (2016) 95.8 94.6 – –

Graph

Kiperwasser & Goldberg (2016) 93.9 91.9 87.6 86.1
Cheng et al. (2016) 94.10 91.49 88.1 85.7
Hashimoto et al. (2016) 94.67 92.90 – –
Deep Biaffine 95.74 94.08 89.30 88.23

Table 4: Results on the English PTB and Chinese PTB parsing datasets

Catalan Chinese Czech
Model UAS LAS UAS LAS UAS LAS

Andor et al. 92.67 89.83 84.72 80.85 88.94 84.56
Deep Biaffine 94.69 92.02 88.90 85.38 92.08 87.38

English German Spanish
Model UAS LAS UAS LAS UAS LAS

Andor et al. 93.22 91.23 90.91 89.15 92.62 89.95
Deep Biaffine 95.21 93.20 93.46 91.44 94.34 91.65

Table 5: Results on the CoNLL ’09 shared task datasets

4.2.4 EMBEDDING DROPOUT

Because we increase the parser’s power, we also have to increase its regularization. In addition to
using relatively extreme dropout in the recurrent and MLP layers mentioned in Table 1, we also
regularize the input layer. We drop 33% of words and 33% of tags during training: when one is
dropped the other is scaled by a factor of two to compensate, and when both are dropped together,
the model simply gets an input of zeros. Models trained with only word or tag dropout but not
both wind up signficantly overfitting, hindering label accuracy and—in the latter case—attachment
accuracy. Interestingly, not using any tags at all actually results in better performance than using
tags without dropout.

4.2.5 OPTIMIZER

We choose to optimize with Adam (Kingma & Ba, 2014), which (among other things) keeps a mov-
ing average of the L2 norm of the gradient for each parameter throughout training and divides the
gradient for each parameter by this moving average, ensuring that the magnitude of the gradients will
on average be close to one. However, we find that the value for β2 recommended by Kingma & Ba—
which controls the decay rate for this moving average—is too high for this task (and we suspect more
generally). When this value is very large, the magnitude of the current update is heavily influenced
by the larger magnitude of gradients very far in the past, with the effect that the optimizer can’t adapt
quickly to recent changes in the model. Thus we find that setting β2 to .9 instead of .999 makes a
large positive impact on final performance.

4.3 RESULTS

Our model gets nearly the same UAS performance on PTB-SD 3.3.0 as the current SOTA model
from Kuncoro et al. (2016) in spite of its substantially simpler architecture, and gets SOTA UAS
performance on CTB 5.17 as well as SOTA performance on all CoNLL 09 languages. It is worth
noting that the CoNLL 09 datasets contain many non-projective dependencies, which are difficult
or impossible for transition-based—but not graph-based—parsers to predict. This may account for
some of the large, consistent difference between our model and Andor et al.’s 2016 transition-based
model applied to these datasets.

7We’d like to thank Zhiyang Teng for finding a bug in the original code that affected the CTB 5.1 dataset
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Selected recent works

A Graph-based Model for Joint Chinese Word 
Segmentation and Dependency Parsing


Hang Yan, Xipeng Qiu, Xuanjing Huang

Improved Dependency Parsing using Implicit Word 
Connections Learned from Unlabeled Data


Wenhui Wang, Baobao Chang, Mairgup Mansur

Dependency Parsing of Code-Switching Data with 
Cross-Lingual Feature Representation


Niko Partanen, Kyungtae Lim, Michael Rießler, Thierry 
Poibeau

Universal Dependencies [linguistic motivation]


Marie-Catherine de Marneffe, Christopher D. 
Manning, Joakim Nivre, Daniel Zeman

Zero-Shot Cross-Lingual Dependency Parsing 
through Contextual Embedding Transformation


Haoran Xu, Philipp Koehn

Graph Convolution over Pruned Dependency 
Trees Improves Relation Extraction


Yuhao Zhang, Peng Qi, Christopher D. Manning

Meta-learning for fast cross-lingual adaptation in 
dependency parsing 


Anna Langedijk, Verna Dankers, Phillip Lippe, 
Sander Bos, Bryan Cardenas Guevara, Helen 
Yannakoudakis, Ekaterina Shutova
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Universal Dependencies v2: An evergrowing 
multilingual treebank collection [overview & data]


Joakim Nivre, Marie-Catherine de Marneffe, Filip 
Ginter, Jan Hajič, Christopher D. Manning, 
Sampo Pyysalo, Sebastian Schuster, Francis 
Tyers, Daniel Zeman

https://www.aclweb.org/anthology/2020.tacl-1.6.pdf
https://www.aclweb.org/anthology/2020.tacl-1.6.pdf
https://www.aclweb.org/anthology/D18-1311.pdf
https://www.aclweb.org/anthology/D18-1311.pdf
https://www.aclweb.org/anthology/W18-0201/
https://www.aclweb.org/anthology/W18-0201/
https://direct.mit.edu/coli/article/doi/10.1162/coli_a_00402/98516/Universal-Dependencies
https://arxiv.org/abs/2103.02212
https://arxiv.org/abs/2103.02212
https://www.aclweb.org/anthology/D18-1244/
https://www.aclweb.org/anthology/D18-1244/
https://arxiv.org/pdf/2104.04736.pdf
https://arxiv.org/pdf/2104.04736.pdf
https://www.aclweb.org/anthology/2020.lrec-1.497
https://www.aclweb.org/anthology/2020.lrec-1.497


Demos

• Stanza (from Stanford): http://stanza.run/ 


• AllenNLP (from Allen Institute for AI):  
https://demo.allennlp.org/dependency-parsing 
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http://stanza.run/
https://demo.allennlp.org/dependency-parsing


Practice
1. For the sentence a b c d e, what parse would the action sequence  

S S S S RA RA LA S LA RA correspond to?


2. For a length-N sentence, what is the O(·) complexity of PCKY Constituency 
Parsing vs. Arc-Standard Transition-Based Dependency Parsing?


‣ Space complexity: how large are the data structures?


‣ Time complexity: how many choices do we have to consider?


‣ Hint: You can introduce constants for relevant factors besides N.


3. Can Arc-Standard Transition-Based Parsing build any kind of tree (given the 
right action sequence)? Explain.


Group 1: Q1 | Group 2: Q2 for CKY | Group 3: Q2 for transition-based | Group 4: Q3
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