
CS	6956:	Deep	Learning	for	NLP

Word	Embeddings

Overview

• Representing	meaning

• Word	embeddings:	Early	work

• Word	embeddings via	language	models

• Word2vec	and	Glove

• Evaluating	embeddings

• Design	choices	and	open	questions

1

Overview

• Representing	meaning

• Word	embeddings:	Early	work

• Word	embeddings via	language	models

• Word2vec	and	Glove

• Evaluating	embeddings

• Design	choices	and	open	questions

2

Word	embeddings via	language	models

The	goal:	To	find	vector	embeddings of	words

High	level	approach:	
1. Train	a	model	for	a	surrogate	task	(in	this	case	

language	modeling)
2. Word	embeddings are	a	byproduct	of	this	process

3

Neural	network	language	models

• A	multi-layer	neural	network	[Bengio et	al	2003]
– Words	→ embedding	layer	→ hidden	layers	→ softmax
– Cross-entropy	loss

• Instead	of	producing	probability,	just	produce	a	score	for	the	
next	word	(no	softmax)	[Collobert and	Weston,	2008]
– Ranking	loss
– Intuition:	Valid	word	sequences	should	get	a	higher	score	than	invalid	

ones

• No	need	for	a	multi-layer	network,	a	shallow	network	is	good	
enough	[Mikolov,	2013,	word2vec]
– Simpler	model,	fewer	parameters
– Faster	to	train

4

Context	=	previous	
words	in	sentence

Context	=	previous	
and		next	words	in	
sentence

This	lecture

• The	word2vec	models:	CBOW	and	Skipgram

• Connection	between	word2vec	and	matrix	
factorization

• GloVe

5

Word2Vec

• Two	architectures	for	learning	word	embeddings
– Skipgram and	CBOW

• Both	have	two	key	differences	from	the	older	
Bengio/C&W	approaches
1. No	hidden	layers
2. Extra	context	(both	left	and	right	context)

• Several	computational	tricks	to	make	things	faster

6

[Mikolov et	al	ICLR	2013,	Mikolov et	al	NIPS	2013]

This	lecture

• The	word2vec	models:	CBOW and	Skipgram

• Connection	between	word2vec	and	matrix	
factorization

• GloVe

7

Continuous	Bag	of	Words	(CBOW)

Given	a	window	of	words	of	a	length	2m	+	1
Call	them:	𝑥#$,⋯ , 𝑥#' 𝑥(𝑥',⋯ , 𝑥$

Define	a	probabilistic	model	for	predicting	the	middle	
word

𝑃(𝑥(∣ 𝑥#,	,⋯ , 𝑥#', 𝑥' ,⋯ , 𝑥,)

Train	the	model	by	minimizing	loss	over	the	dataset

𝐿 =1log𝑃(𝑥(∣ 𝑥#,	,⋯ , 𝑥#', 𝑥' ,⋯ , 𝑥,)	
�

�

8

Continuous	Bag	of	Words	(CBOW)

Given	a	window	of	words	of	a	length	2m	+	1
Call	them:	𝑥#$,⋯ , 𝑥#' 𝑥(𝑥',⋯ , 𝑥$

Define	a	probabilistic	model	for	predicting	the	middle	
word

𝑃(𝑥(∣ 𝑥#$,⋯ , 𝑥#', 𝑥' ,⋯ , 𝑥$)

Train	the	model	by	minimizing	loss	over	the	dataset

𝐿 =1log𝑃(𝑥(∣ 𝑥#,	,⋯ , 𝑥#', 𝑥' ,⋯ , 𝑥,)	
�

�

9

Continuous	Bag	of	Words	(CBOW)

Given	a	window	of	words	of	a	length	2m	+	1
Call	them:	𝑥#$,⋯ , 𝑥#' 𝑥(𝑥',⋯ , 𝑥$

Define	a	probabilistic	model	for	predicting	the	middle	
word

𝑃(𝑥(∣ 𝑥#$,⋯ , 𝑥#', 𝑥' ,⋯ , 𝑥$)

Train	the	model	by	minimizing	loss	over	the	dataset

𝐿 = −1log𝑃(𝑥(∣ 𝑥#$,⋯ , 𝑥#', 𝑥' ,⋯ , 𝑥$)	
�

�

10

Continuous	Bag	of	Words	(CBOW)

Given	a	window	of	words	of	a	length	2m	+	1
Call	them:	𝑥#$,⋯ , 𝑥#' 𝑥(𝑥',⋯ , 𝑥$

Define	a	probabilistic	model	for	predicting	the	middle	
word

𝑃(𝑥(∣ 𝑥#$,⋯ , 𝑥#', 𝑥' ,⋯ , 𝑥$)

Train	the	model	by	minimizing	loss	over	the	dataset

𝐿 = −1log𝑃(𝑥(∣ 𝑥#$,⋯ , 𝑥#', 𝑥' ,⋯ , 𝑥$)	
�

�

11

Need	to	define	
this	to	complete	
the	model

The	CBOW	model

• The	classification	task
– Input:	context	words	𝑥#$,⋯ , 𝑥#', 𝑥' ,⋯ , 𝑥$
– Output:	the	center	word	𝑥(
– These	words	correspond	to	one-hot	vectors

• Eg:	cat would	be	associated	with	a	dimension,	its	one-hot	vector	has	1	in	
that	dimension	and	zero	everywhere	else

• Notation:
– n:	the	embedding	dimension	(eg 300)
– V:	The	vocabulary	of	words	we	want	to	embed

• Define	two	matrices:
1. 𝒱:	a	matrix	of	size	𝑛×|𝑉|
2. 𝒲:	a	matrix	of	size	 𝑉 ×𝑛

12

The	CBOW	model

1. Map	all	the	context	words	into	the	n	dimensional	space	using	𝒱
– We	get	2m	vectors	𝒱𝑥#$,⋯ , 𝒱𝑥#', 𝒱𝑥',⋯ , 𝒱𝑥$

2. Average	these	vectors	to	get	a	context	vector

𝑣A = 	
1
2𝑚 1 𝒱𝑥C

$

CD#$,CE(

3. Use	this	to	compute	a	score	vector	for	the	output
𝑠𝑐𝑜𝑟𝑒 = 𝒲𝑣A

4. Use	the	score	to	compute	probability	via	softmax
𝑃 𝑥(=⋅ 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝒲𝑣A)

13

Input:	context	𝑥#$,⋯ , 𝑥#', 𝑥' ,⋯ , 𝑥$
Output:	the	center	word	𝑥(

n:	the	embedding	dimension	(eg 300)
V:	The	vocabilary

𝒱:	a	matrix	of	size	𝑛×|𝑉|
𝒲:	a	matrix	of	size	 𝑉 ×𝑛

The	CBOW	model

1. Map	all	the	context	words	into	the	n	dimensional	space	using	𝒱
– We	get	2m	vectors	𝒱𝑥#$,⋯ , 𝒱𝑥#', 𝒱𝑥',⋯ , 𝒱𝑥$

2. Average	these	vectors	to	get	a	context	vector

𝑣A = 	
1
2𝑚 1 𝒱𝑥C

$

CD#$,CE(

3. Use	this	to	compute	a	score	vector	for	the	output
𝑠𝑐𝑜𝑟𝑒 = 𝒲𝑣A

4. Use	the	score	to	compute	probability	via	softmax
𝑃 𝑥(=⋅ 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝒲𝑣A)

14

Input:	context	𝑥#$,⋯ , 𝑥#', 𝑥' ,⋯ , 𝑥$
Output:	the	center	word	𝑥(

n:	the	embedding	dimension	(eg 300)
V:	The	vocabilary

𝒱:	a	matrix	of	size	𝑛×|𝑉|
𝒲:	a	matrix	of	size	 𝑉 ×𝑛

The	CBOW	model

1. Map	all	the	context	words	into	the	n	dimensional	space	using	𝒱
– We	get	2m	vectors	𝒱𝑥#$,⋯ , 𝒱𝑥#', 𝒱𝑥',⋯ , 𝒱𝑥$

2. Average	these	vectors	to	get	a	context	vector

𝑣A = 	
1
2𝑚 1 𝒱𝑥C

$

CD#$,CE(

3. Use	this	to	compute	a	score	vector	for	the	output
𝑠𝑐𝑜𝑟𝑒 = 𝒲𝑣A

4. Use	the	score	to	compute	probability	via	softmax
𝑃 𝑥(=⋅ 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝒲𝑣A)

15

Input:	context	𝑥#$,⋯ , 𝑥#', 𝑥' ,⋯ , 𝑥$
Output:	the	center	word	𝑥(

n:	the	embedding	dimension	(eg 300)
V:	The	vocabilary

𝒱:	a	matrix	of	size	𝑛×|𝑉|
𝒲:	a	matrix	of	size	 𝑉 ×𝑛

The	CBOW	model

1. Map	all	the	context	words	into	the	n	dimensional	space	using	𝒱
– We	get	2m	vectors	𝒱𝑥#$,⋯ , 𝒱𝑥#', 𝒱𝑥',⋯ , 𝒱𝑥$

2. Average	these	vectors	to	get	a	context	vector

𝑣A = 	
1
2𝑚 1 𝒱𝑥C

$

CD#$,CE(

3. Use	this	to	compute	a	score	vector	for	the	output
𝑠𝑐𝑜𝑟𝑒 = 𝒲𝑣A

4. Use	the	score	to	compute	probability	via	softmax
𝑃 𝑥(=⋅ 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝒲𝑣A)

16

Input:	context	𝑥#$,⋯ , 𝑥#', 𝑥' ,⋯ , 𝑥$
Output:	the	center	word	𝑥(

n:	the	embedding	dimension	(eg 300)
V:	The	vocabilary

𝒱:	a	matrix	of	size	𝑛×|𝑉|
𝒲:	a	matrix	of	size	 𝑉 ×𝑛

The	CBOW	model

1. Map	all	the	context	words	into	the	n	dimensional	space	using	𝒱
– We	get	2m	vectors	𝒱𝑥#$,⋯ , 𝒱𝑥#', 𝒱𝑥',⋯ , 𝒱𝑥$

2. Average	these	vectors	to	get	a	context	vector

𝑣A = 	
1
2𝑚 1 𝒱𝑥C

$

CD#$,CE(

3. Use	this	to	compute	a	score	vector	for	the	output
𝑠𝑐𝑜𝑟𝑒 = 𝒲𝑣A

4. Use	the	score	to	compute	probability	via	softmax
𝑃 𝑥(=⋅ 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝒲𝑣A)

17

Input:	context	𝑥#$,⋯ , 𝑥#', 𝑥' ,⋯ , 𝑥$
Output:	the	center	word	𝑥(

n:	the	embedding	dimension	(eg 300)
V:	The	vocabilary

𝒱:	a	matrix	of	size	𝑛×|𝑉|
𝒲:	a	matrix	of	size	 𝑉 ×𝑛

The	CBOW	model

1. Map	all	the	context	words	into	the	n	dimensional	space	using	𝒱
– We	get	2m	vectors	𝒱𝑥#$,⋯ , 𝒱𝑥#', 𝒱𝑥',⋯ , 𝒱𝑥$

2. Average	these	vectors	to	get	a	context	vector

𝑣A = 	
1
2𝑚 1 𝒱𝑥C

$

CD#$,CE(

3. Use	this	to	compute	a	score	vector	for	the	output
𝑠𝑐𝑜𝑟𝑒 = 𝒲𝑣A

4. Use	the	score	to	compute	probability	via	softmax
𝑃 𝑥(=⋅ 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝒲𝑣A)

18

Input:	context	𝑥#$,⋯ , 𝑥#', 𝑥' ,⋯ , 𝑥$
Output:	the	center	word	𝑥(

n:	the	embedding	dimension	(eg 300)
V:	The	vocabilary

𝒱:	a	matrix	of	size	𝑛×|𝑉|
𝒲:	a	matrix	of	size	 𝑉 ×𝑛

Exercise:	Write	this	as	a	computation	graph

The	CBOW	model

1. Map	all	the	context	words	into	the	n	dimensional	space	using	𝒱
– We	get	2m	vectors	𝒱𝑥#$,⋯ , 𝒱𝑥#', 𝒱𝑥',⋯ , 𝒱𝑥$

2. Average	these	vectors	to	get	a	context	vector

𝑣A = 	
1
2𝑚 1 𝒱𝑥C

$

CD#$,CE(

3. Use	this	to	compute	a	score	vector	for	the	output
𝑠𝑐𝑜𝑟𝑒 = 𝒲𝑣A

4. Use	the	score	to	compute	probability	via	softmax
𝑃 𝑥(=⋅ 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝒲𝑣A)

19

Input:	context	𝑥#$,⋯ , 𝑥#', 𝑥' ,⋯ , 𝑥$
Output:	the	center	word	𝑥(

n:	the	embedding	dimension	(eg 300)
V:	The	vocabilary

𝒱:	a	matrix	of	size	𝑛×|𝑉|
𝒲:	a	matrix	of	size	 𝑉 ×𝑛

Word	embeddings:	Rows	of	the	matrix	
corresponding	to	the	output.	That	is	rows	of	𝒲

The	CBOW	loss:	A	worked	example

Consider	the	loss	for	one	example	with	context	size	2	on	each	side.	
Denote	the	words	by	a	b	c d	e	with	c being	the	output

• Step	1:	Project	a,	b,	d,	e	using	the	matrix	𝒱.	This	gives	us	rows	of	the	
matrix:	𝑣O, 𝑣P, 𝑣Q, 𝑣R.

• Step	2:	Their	average:

𝑣A =
𝑣O + 𝑣P + 𝑣T + 𝑣Q

4
• Step	3:	The	score	=	𝒲𝑣A

– Each	element	of	this	score	corresponds	to	the	score	for	a	single	word.	

• Step	4:	the	probability	of	a	word	being	the	center	word
𝑃 ⋅ 𝑎, 𝑏, 𝑑, 𝑒 = softmax(𝒲𝑣A)

20

The	CBOW	loss:	A	worked	example

Consider	the	loss	for	one	example	with	context	size	2	on	each	side.	
Denote	the	words	by	a	b	c d	e	with	c being	the	output

• Step	1:	Project	a,	b,	d,	e	using	the	matrix	𝒱.	This	gives	us	rows	of	the	
matrix:	𝑣O, 𝑣P, 𝑣Q, 𝑣R.

• Step	2:	Their	average:

𝑣A =
𝑣O + 𝑣P + 𝑣T + 𝑣Q

4
• Step	3:	The	score	=	𝒲𝑣A

– Each	element	of	this	score	corresponds	to	the	score	for	a	single	word.	

• Step	4:	the	probability	of	a	word	being	the	center	word
𝑃 ⋅ 𝑎, 𝑏, 𝑑, 𝑒 = softmax(𝒲𝑣A)

21

The	CBOW	loss:	A	worked	example

Consider	the	loss	for	one	example	with	context	size	2	on	each	side.	
Denote	the	words	by	a	b	c d	e	with	c being	the	output

• Step	1:	Project	a,	b,	d,	e	using	the	matrix	𝒱.	This	gives	us	rows	of	the	
matrix:	𝑣O, 𝑣P, 𝑣Q, 𝑣R.

• Step	2:	Their	average:

𝑣A =
𝑣O + 𝑣P + 𝑣T + 𝑣Q

4
• Step	3:	The	score	=	𝒲𝑣A

– Each	element	of	this	score	corresponds	to	the	score	for	a	single	word.	

• Step	4:	the	probability	of	a	word	being	the	center	word
𝑃 ⋅ 𝑎, 𝑏, 𝑑, 𝑒 = softmax(𝒲𝑣A)

22

The	CBOW	loss:	A	worked	example

Consider	the	loss	for	one	example	with	context	size	2	on	each	side.	
Denote	the	words	by	a	b	c d	e	with	c being	the	output

• Step	1:	Project	a,	b,	d,	e	using	the	matrix	𝒱.	This	gives	us	rows	of	the	
matrix:	𝑣O, 𝑣P, 𝑣Q, 𝑣R.

• Step	2:	Their	average:

𝑣A =
𝑣O + 𝑣P + 𝑣T + 𝑣Q

4
• Step	3:	The	score	=	𝒲𝑣A

– Each	element	of	this	score	corresponds	to	the	score	for	a	single	word.	

• Step	4:	the	probability	of	a	word	being	the	center	word
𝑃 ⋅ 𝑎, 𝑏, 𝑑, 𝑒 = softmax(𝒲𝑣A)

23

The	CBOW	loss:	A	worked	example

Consider	the	loss	for	one	example	with	context	size	2	on	each	side.	
Denote	the	words	by	a	b	c d	e	with	c being	the	output

• Step	1:	Project	a,	b,	d,	e	using	the	matrix	𝒱.	This	gives	us	rows	of	the	
matrix:	𝑣O, 𝑣P, 𝑣Q, 𝑣R.

• Step	2:	Their	average:

𝑣A =
𝑣O + 𝑣P + 𝑣T + 𝑣Q

4
• Step	3:	The	score	=	𝒲𝑣A

– Each	element	of	this	score	corresponds	to	the	score	for	a	single	word.	

• Step	4:	the	probability	of	a	word	being	the	center	word
𝑃 ⋅ 𝑎, 𝑏, 𝑑, 𝑒 = softmax(𝒲𝑣A)

24

The	CBOW	loss:	A	worked	example

Consider	the	loss	for	one	example	with	context	size	2	on	each	side.	
Denote	the	words	by	a	b	c d	e	with	c being	the	output

• Step	4:	the	probability	of	a	word	being	the	center	word
𝑃 ⋅ 𝑎, 𝑏, 𝑑, 𝑒 = softmax(𝒲𝑣A)

More	concretely:	

𝑃 𝑐	 𝑎, 𝑏, 𝑑, 𝑒) = 	
exp	(𝑤Ta𝑣A)

∑ exp	(𝑤Ca𝑣A)
|c|
CD'

The	loss	requires	the	negative	log	of	this	quantity.

𝐿𝑜𝑠𝑠 = −𝑤Ta𝑣A + log1exp	(𝑤Ca𝑣A)
|c|

CD'

	

25

The	CBOW	loss:	A	worked	example

Consider	the	loss	for	one	example	with	context	size	2	on	each	side.	
Denote	the	words	by	a	b	c d	e	with	c being	the	output

• Step	4:	the	probability	of	a	word	being	the	center	word
𝑃 ⋅ 𝑎, 𝑏, 𝑑, 𝑒 = softmax(𝒲𝑣A)

More	concretely:	

𝑃 𝑐	 𝑎, 𝑏, 𝑑, 𝑒) = 	
exp	(𝑤Ta𝑣A)

∑ exp	(𝑤Ca𝑣A)
|c|
CD'

The	loss	requires	the	negative	log	of	this	quantity.

𝐿𝑜𝑠𝑠 = −𝑤Ta𝑣A + log1exp	(𝑤Ca𝑣A)
|c|

CD'

	

26

The	CBOW	loss:	A	worked	example

Consider	the	loss	for	one	example	with	context	size	2	on	each	side.	
Denote	the	words	by	a	b	c d	e	with	c being	the	output

• Step	4:	the	probability	of	a	word	being	the	center	word
𝑃 ⋅ 𝑎, 𝑏, 𝑑, 𝑒 = softmax(𝒲𝑣A)

More	concretely:	

𝑃 𝑐	 𝑎, 𝑏, 𝑑, 𝑒) = 	
exp	(𝑤Ta𝑣A)

∑ exp	(𝑤Ca𝑣A)
|c|
CD'

The	loss	requires	the	negative	log	of	this	quantity.

𝐿𝑜𝑠𝑠 = −𝑤Ta𝑣A + log1exp	(𝑤Ca𝑣A)
|c|

CD'

	

27

The	CBOW	loss:	A	worked	example

Consider	the	loss	for	one	example	with	context	size	2	on	each	side.	
Denote	the	words	by	a	b	c d	e	with	c being	the	output

• Step	4:	the	probability	of	a	word	being	the	center	word
𝑃 ⋅ 𝑎, 𝑏, 𝑑, 𝑒 = softmax(𝒲𝑣A)

More	concretely:	

𝑃 𝑐	 𝑎, 𝑏, 𝑑, 𝑒) = 	
exp	(𝑤Ta𝑣A)

∑ exp	(𝑤Ca𝑣A)
|c|
CD'

The	loss	requires	the	negative	log	of	this	quantity.

𝐿𝑜𝑠𝑠 = −𝑤Ta𝑣A + log1exp	(𝑤Ca𝑣A)
|c|

CD'

	

28

Exercise:	Calculate	the	derivative	of	this	with	respect	to	all	the	w’s	and	the	v’s	

The	CBOW	loss:	A	worked	example

Consider	the	loss	for	one	example	with	context	size	2	on	each	side.	
Denote	the	words	by	a	b	c d	e	with	c being	the	output

• Step	4:	the	probability	of	a	word	being	the	center	word
𝑃 ⋅ 𝑎, 𝑏, 𝑑, 𝑒 = softmax(𝒲𝑣A)

More	concretely:	

𝑃 𝑐	 𝑎, 𝑏, 𝑑, 𝑒) = 	
exp	(𝑤Ta𝑣A)

∑ exp	(𝑤Ca𝑣A)
|c|
CD'

The	loss	requires	the	negative	log	of	this	quantity.

𝐿𝑜𝑠𝑠 = −𝑤Ta𝑣A + log1exp	(𝑤Ca𝑣A)
|c|

CD'

	

29

Exercise:	Calculate	the	derivative	of	this	with	respect	to	all	the	w’s	and	the	v’s	

Note	that	this	
sum	requires	
us	to	iterate	
over	the	entire	
vocabulary	for	
each	example!

This	lecture

• The	word2vec	models:	CBOW	and	Skipgram

• Connection	between	word2vec	and	matrix	
factorization

• GloVe

30

Skipgram

Given	a	window	of	words	of	a	length	2m	+	1
Call	them:	𝑥#$,⋯ , 𝑥#' 𝑥(𝑥',⋯ , 𝑥$

31

The	other	word2vec	model

Skipgram

Given	a	window	of	words	of	a	length	2m	+	1
Call	them:	𝑥#$,⋯ , 𝑥#' 𝑥(𝑥',⋯ , 𝑥$

Define	a	probabilistic	model	for	predicting	each	context	
word

𝑃(𝑥Td,eRfe ∣ 𝑥()

32

Inverts	the	inputs	and	outputs	from	CBOW

As	far	as	the	probabilistic	model	is	concerned:
Input:	the	center	word
Output:	all	the	words	in	the	context

Skipgram

Given	a	window	of	words	of	a	length	2m	+	1
Call	them:	𝑥#$,⋯ , 𝑥#' 𝑥(𝑥',⋯ , 𝑥$

Define	a	probabilistic	model	for	predicting	each	context	
word

𝑃(𝑥Td,eRfe ∣ 𝑥()

33

Inverts	the	inputs	and	outputs	from	CBOW

As	far	as	the	probabilistic	model	is	concerned:
Input:	the	center	word
Output:	all	the	words	in	the	context

Inverts	the	inputs	and	outputs	from	CBOW

As	far	as	the	probabilistic	model	is	concerned:
Input:	the	center	word
Output:	all	the	words	in	the	context

The	Skipgram model

• The	classification	task
– Input:	the	center	word	𝑥(
– Output:	context	words	𝑥#$,⋯ , 𝑥#', 𝑥' ,⋯ , 𝑥$
– As	before,	these	words	correspond	to	one-hot	vectors

• Notation:
– n:	the	embedding	dimension	(eg 300)
– V:	The	vocabulary	of	words	we	want	to	embed

• Define	two	matrices:
1. 𝒱:	a	matrix	of	size	𝑛×|𝑉|
2. 𝒲:	a	matrix	of	size	 𝑉 ×𝑛

34

The	Skipgram model

1. Map	the	center	words	into	the	n-dimensional	space	
using𝒲
– We	get	an	n	dimensional	vector	𝑤 = 	𝒲𝑥(

2. For	the	𝑖ehcontext	position,	compute	the	score	for	a	
word	occupying	that	position	as

𝑣C = 𝒱𝑤

3. Normalize	the	score	for	each	position	to	get	a	
probability

𝑃 𝑥C =	⋅ 𝑥(= softmax(𝑣C)

35

Input:	the	center	word	𝑥(
Output:	context	𝑥#$,⋯ , 𝑥#', 𝑥' ,⋯ , 𝑥$

n:	the	embedding	dimension	(eg 300)
V:	The	vocabilary

𝒱:	a	matrix	of	size	𝑛×|𝑉|
𝒲:	a	matrix	of	size	 𝑉 ×𝑛

The	Skipgram model

1. Map	the	center	words	into	the	n-dimensional	space	
using𝒲
– We	get	an	n	dimensional	vector	𝑤 = 	𝒲𝑥(

2. For	the	𝑖ehcontext	position,	compute	the	score	for	a	
word	occupying	that	position	as

𝑣C = 𝒱𝑤

3. Normalize	the	score	for	each	position	to	get	a	
probability

𝑃 𝑥C =	⋅ 𝑥(= softmax(𝑣C)

36

Input:	the	center	word	𝑥(
Output:	context	𝑥#$,⋯ , 𝑥#', 𝑥' ,⋯ , 𝑥$

n:	the	embedding	dimension	(eg 300)
V:	The	vocabilary

𝒱:	a	matrix	of	size	𝑛×|𝑉|
𝒲:	a	matrix	of	size	 𝑉 ×𝑛

The	Skipgram model

1. Map	the	center	words	into	the	n-dimensional	space	
using𝒲
– We	get	an	n	dimensional	vector	𝑤 = 	𝒲𝑥(

2. For	the	𝑖ehcontext	position,	compute	the	score	for	a	
word	occupying	that	position	as

𝑣C = 𝒱𝑤

3. Normalize	the	score	for	each	position	to	get	a	
probability

𝑃 𝑥C =	⋅ 𝑥(= softmax(𝑣C)

37

Input:	the	center	word	𝑥(
Output:	context	𝑥#$,⋯ , 𝑥#', 𝑥' ,⋯ , 𝑥$

n:	the	embedding	dimension	(eg 300)
V:	The	vocabilary

𝒱:	a	matrix	of	size	𝑛×|𝑉|
𝒲:	a	matrix	of	size	 𝑉 ×𝑛

The	Skipgram model

1. Map	the	center	words	into	the	n-dimensional	space	
using𝒲
– We	get	an	n	dimensional	vector	𝑤 = 	𝒲𝑥(

2. For	the	𝑖ehcontext	position,	compute	the	score	for	a	
word	occupying	that	position	as

𝑣C = 𝒱𝑤

3. Normalize	the	score	for	each	position	to	get	a	
probability

𝑃 𝑥C =	⋅ 𝑥(= softmax(𝑣C)

38

Input:	the	center	word	𝑥(
Output:	context	𝑥#$,⋯ , 𝑥#', 𝑥' ,⋯ , 𝑥$

n:	the	embedding	dimension	(eg 300)
V:	The	vocabilary

𝒱:	a	matrix	of	size	𝑛×|𝑉|
𝒲:	a	matrix	of	size	 𝑉 ×𝑛

The	Skipgram model

1. Map	the	center	words	into	the	n-dimensional	space	
using𝒲
– We	get	an	n	dimensional	vector	𝑤 = 	𝒲𝑥(

2. For	the	𝑖ehcontext	position,	compute	the	score	for	a	
word	occupying	that	position	as

𝑣C = 𝒱𝑤

3. Normalize	the	score	for	each	position	to	get	a	
probability

𝑃 𝑥C =	⋅ 𝑥(= softmax(𝑣C)

39

Input:	the	center	word	𝑥(
Output:	context	𝑥#$,⋯ , 𝑥#', 𝑥' ,⋯ , 𝑥$

n:	the	embedding	dimension	(eg 300)
V:	The	vocabilary

𝒱:	a	matrix	of	size	𝑛×|𝑉|
𝒲:	a	matrix	of	size	 𝑉 ×𝑛

Exercise:	Write	this	as	a	computation	graph

The	Skipgram model

1. Map	the	center	words	into	the	n-dimensional	space	
using	𝒲
– We	get	an	n	dimensional	vector	𝑤 = 	𝒲𝑥(

2. For	the	𝑖ehcontext	position,	compute	the	score	for	a	
word	occupying	that	position	as

𝑣C = 𝒱𝑤

3. Normalize	the	score	for	each	position	to	get	a	
probability

𝑃 𝑥C =	⋅ 𝑥(= softmax(𝑣C)

40

Input:	the	center	word	𝑥(
Output:	context	𝑥#$,⋯ , 𝑥#', 𝑥' ,⋯ , 𝑥$

n:	the	embedding	dimension	(eg 300)
V:	The	vocabilary

𝒱:	a	matrix	of	size	𝑛×|𝑉|
𝒲:	a	matrix	of	size	 𝑉 ×𝑛

Remember	the	
goal	of	learning:	
Make	this	
probability	
highest	for	the	
observed	words	in	
this	context.

The	Skipgram loss:		A	worked	example

Consider	the	loss	for	one	example	with	context	size	2	on	each	side.	
Denote	the	words	by	a	b	c d	e	with	c being	the	output

Step	1:	Get	the	vector	𝑤T = 	𝒲𝑐

Step	2:	For	every	position	compute	the	score	for	a	word	occupying	that	
position	as	𝑣 = 𝒱𝑤T

Step	3:	Normalize	the	score	for	each	position	using	softmax

𝑃 𝑥C =⋅ 𝑥(= 𝑐 = softmax(𝑣)
Or	more	specifically:

𝑃 𝑥#i = 𝑎 𝑥(= 𝑐 =
exp 𝑣Oa𝑤T

∑ exp	(𝑣Ca𝑤T)
|c|
CD'

41

The	Skipgram loss:		A	worked	example

Consider	the	loss	for	one	example	with	context	size	2	on	each	side.	
Denote	the	words	by	a	b	c d	e	with	c being	the	output

Step	1:	Get	the	vector	𝑤T = 	𝒲𝑐

Step	2:	For	every	position	compute	the	score	for	a	word	occupying	that	
position	as	𝑣 = 𝒱𝑤T

Step	3:	Normalize	the	score	for	each	position	using	softmax

𝑃 𝑥C =⋅ 𝑥(= 𝑐 = softmax(𝑣)
Or	more	specifically:

𝑃 𝑥#i = 𝑎 𝑥(= 𝑐 =
exp 𝑣Oa𝑤T

∑ exp	(𝑣Ca𝑤T)
|c|
CD'

42

The	Skipgram loss:		A	worked	example

Consider	the	loss	for	one	example	with	context	size	2	on	each	side.	
Denote	the	words	by	a	b	c d	e	with	c being	the	output

Step	1:	Get	the	vector	𝑤T = 	𝒲𝑐

Step	2:	For	every	position	compute	the	score	for	a	word	occupying	that	
position	as	𝑣 = 𝒱𝑤T

Step	3:	Normalize	the	score	for	each	position	using	softmax

𝑃 𝑥C =⋅ 𝑥(= 𝑐 = softmax(𝑣)
Or	more	specifically:

𝑃 𝑥#i = 𝑎 𝑥(= 𝑐 =
exp 𝑣Oa𝑤T

∑ exp	(𝑣Ca𝑤T)
|c|
CD'

43

The	Skipgram loss:		A	worked	example

Consider	the	loss	for	one	example	with	context	size	2	on	each	side.	
Denote	the	words	by	a	b	c d	e	with	c being	the	output

Step	1:	Get	the	vector	𝑤T = 	𝒲𝑐

Step	2:	For	every	position	compute	the	score	for	a	word	occupying	that	
position	as	𝑣 = 𝒱𝑤T

Step	3:	Normalize	the	score	for	each	position	using	softmax

𝑃 𝑥C =⋅ 𝑥(= 𝑐 = softmax(𝑣)
Or	more	specifically:

𝑃 𝑥#i = 𝑎 𝑥(= 𝑐 =
exp 𝑣Oa𝑤T

∑ exp	(𝑣Ca𝑤T)
|c|
CD'

44

The	Skipgram loss:		A	worked	example

Consider	the	loss	for	one	example	with	context	size	2	on	each	side.	
Denote	the	words	by	a	b	c d	e	with	c being	the	output

Step	1:	Get	the	vector	𝑤T = 	𝒲𝑐

Step	2:	For	every	position	compute	the	score	for	a	word	occupying	that	
position	as	𝑣 = 𝒱𝑤T

Step	3:	Normalize	the	score	for	each	position	using	softmax

𝑃 𝑥C =⋅ 𝑥(= 𝑐 = softmax(𝑣)
Or	more	specifically:

𝑃 𝑥#i = 𝑎 𝑥(= 𝑐 =
exp 𝑣Oa𝑤T

∑ exp	(𝑣Ca𝑤T)
|c|
CD'

45

The	Skipgram loss:		A	worked	example

Consider	the	loss	for	one	example	with	context	size	2	on	each	side.	
Denote	the	words	by	a	b	c d	e	with	c being	the	output

Step	3:	Normalize	the	score	for	each	position	using	softmax

𝑃 𝑥#i = 𝑎 𝑥(= 𝑐 =
exp 𝑣Oa𝑤T

∑ exp	(𝑣Ca𝑤T)
|c|
CD'

The	loss	for	this	example	is	the	sum	of	the	negative	log	of	this	over	all	the	
context	words.

𝐿𝑜𝑠𝑠 = 1 −𝑣ja𝑤T + log1exp 𝑣Ca𝑤T

c

CD'

	
�

j∈{O,P,Q,R}

46

The	Skipgram loss:		A	worked	example

Consider	the	loss	for	one	example	with	context	size	2	on	each	side.	
Denote	the	words	by	a	b	c d	e	with	c being	the	output

Step	3:	Normalize	the	score	for	each	position	using	softmax

𝑃 𝑥#i = 𝑎 𝑥(= 𝑐 =
exp 𝑣Oa𝑤T

∑ exp	(𝑣Ca𝑤T)
|c|
CD'

The	loss	for	this	example	is	the	sum	of	the	negative	log	of	this	over	all	the	
context	words.

𝐿𝑜𝑠𝑠 = 1 −𝑣ja𝑤T + log1exp 𝑣Ca𝑤T

c

CD'

	
�

j∈{O,P,Q,R}

47

The	Skipgram loss:		A	worked	example

Consider	the	loss	for	one	example	with	context	size	2	on	each	side.	
Denote	the	words	by	a	b	c d	e	with	c being	the	output

Step	3:	Normalize	the	score	for	each	position	using	softmax

𝑃 𝑥#i = 𝑎 𝑥(= 𝑐 =
exp 𝑣Oa𝑤T

∑ exp	(𝑣Ca𝑤T)
|c|
CD'

The	loss	for	this	example	is	the	sum	of	the	negative	log	of	this	over	all	the	
context	words.

𝐿𝑜𝑠𝑠 = 1 −𝑣ja𝑤T + log1exp 𝑣Ca𝑤T

c

CD'

	
�

j∈{O,P,Q,R}

48Exercise:	Calculate	the	derivative	of	this	with	respect	to	all	the	w’s	and	the	v’s	

The	Skipgram loss:		A	worked	example

Consider	the	loss	for	one	example	with	context	size	2	on	each	side.	
Denote	the	words	by	a	b	c d	e	with	c being	the	output

Step	3:	Normalize	the	score	for	each	position	using	softmax

𝑃 𝑥#i = 𝑎 𝑥(= 𝑐 =
exp 𝑣Oa𝑤T

∑ exp	(𝑣Ca𝑤T)
|c|
CD'

The	loss	for	this	example	is	the	sum	of	the	negative	log	of	this	over	all	the	
context	words.

𝐿𝑜𝑠𝑠 = 1 −𝑣ja𝑤T + log1exp 𝑣Ca𝑤T

c

CD'

	
�

j∈{O,P,Q,R}

49Exercise:	Calculate	the	derivative	of	this	with	respect	to	all	the	w’s	and	the	v’s	

Note	that	this	sum	
requires	us	to	
iterate	over	the	
entire	vocabulary	
for	each	example!

Negative	sampling

• Can	we	make	it	faster?

• Answer	[Mikolov et	al	2013]:	change	the	objective	function	
and	define	a	new	objective	function	that	does	not	
have	the	same	problem
– Negative	Sampling

• The	overall	method	is	called	Skipgram with	Negative	
Sampling	(SGNS)

50

log1exp 𝑣Ca𝑤T

c

CD'

	

This	sum	requires	us	
to	iterate	over	the	
entire	vocabulary	for	
each	example!

Negative	sampling:	The	intuition

• A	new	task:	Given	a	pair	of	words	(w,	c),	is	this	a	valid	pair	or	not?
– That	is,	can	word	c	occur	in	the	context	window	of	w	or	not?

• This	is	a	binary	classification	problem
– We	can	solve	this	using	logistic	regression
– The	probability	of	a	pair	of	words	being	valid	is	defined	as

𝑃 𝑐 𝑤 = 𝜎 𝑣Ta𝑤o =
1

1 + exp	(−𝑣Ta𝑤o)

• Positive	examples	are	all	pairs	that	occur	in	data,	negative	examples	are	all	
pairs	that	don’t	occur	in	data,	but	this	is	still	a	massive	set!

• Key	insight:	Instead	of	generating	all	possible	negative	examples,	
randomly	sample	k	of	them	in	each	epoch	of	the	learning	loop
– That	is,	there	are	only	k	negatives	for	each	positive	example,	instead	of	the	entire	

vocabulary

51

Negative	sampling:	The	intuition

• A	new	task:	Given	a	pair	of	words	(w,	c),	is	this	a	valid	pair	or	not?
– That	is,	can	word	c	occur	in	the	context	window	of	w	or	not?

• This	is	a	binary	classification	problem
– We	can	solve	this	using	logistic	regression
– The	probability	of	a	pair	of	words	being	valid	is	defined	as

𝑃 𝑐 𝑤 = 𝜎 𝑣Ta𝑤o =
1

1 + exp	(−𝑣Ta𝑤o)

• Positive	examples	are	all	pairs	that	occur	in	data,	negative	examples	are	all	
pairs	that	don’t	occur	in	data,	but	this	is	still	a	massive	set!

• Key	insight:	Instead	of	generating	all	possible	negative	examples,	
randomly	sample	k	of	them	in	each	epoch	of	the	learning	loop
– That	is,	there	are	only	k	negatives	for	each	positive	example,	instead	of	the	entire	

vocabulary

52

Negative	sampling:	The	intuition

• A	new	task:	Given	a	pair	of	words	(w,	c),	is	this	a	valid	pair	or	not?
– That	is,	can	word	c	occur	in	the	context	window	of	w	or	not?

• This	is	a	binary	classification	problem
– We	can	solve	this	using	logistic	regression
– The	probability	of	a	pair	of	words	being	valid	is	defined	as

𝑃 𝑐 𝑤 = 𝜎 𝑣Ta𝑤o =
1

1 + exp	(−𝑣Ta𝑤o)

• Positive	examples	are	all	pairs	that	occur	in	data,	negative	examples	are	all	
pairs	that	don’t	occur	in	data,	but	this	is	still	a	massive	set!

• Key	insight:	Instead	of	generating	all	possible	negative	examples,	
randomly	sample	k	of	them	in	each	epoch	of	the	learning	loop
– That	is,	there	are	only	k	negatives	for	each	positive	example,	instead	of	the	entire	

vocabulary

53

Negative	sampling:	The	intuition

• A	new	task:	Given	a	pair	of	words	(w,	c),	is	this	a	valid	pair	or	not?
– That	is,	can	word	c	occur	in	the	context	window	of	w	or	not?

• This	is	a	binary	classification	problem
– We	can	solve	this	using	logistic	regression
– The	probability	of	a	pair	of	words	being	valid	is	defined	as

𝑃 𝑐 𝑤 = 𝜎 𝑣Ta𝑤o =
1

1 + exp	(−𝑣Ta𝑤o)

• Positive	examples	are	all	pairs	that	occur	in	data,	negative	examples	are	all	
pairs	that	don’t	occur	in	data,	but	this	is	still	a	massive	set!

• Key	insight:	Instead	of	generating	all	possible	negative	examples,	
randomly	sample	k	of	them	in	each	epoch	of	the	learning	loop
– That	is,	there	are	only	k	negatives	for	each	positive	example,	instead	of	the	entire	

vocabulary

54

Negative	sampling:	The	intuition

• A	new	task:	Given	a	pair	of	words	(w,	c),	is	this	a	valid	pair	or	not?
– That	is,	can	word	c	occur	in	the	context	window	of	w	or	not?

• This	is	a	binary	classification	problem
– We	can	solve	this	using	logistic	regression
– The	probability	of	a	pair	of	words	being	valid	is	defined	as

𝑃 𝑐 𝑤 = 𝜎 𝑣Ta𝑤o =
1

1 + exp	(−𝑣Ta𝑤o)

• Positive	examples	are	all	pairs	that	occur	in	data,	negative	examples	are	all	
pairs	that	don’t	occur	in	data,	but	this	is	still	a	massive	set!

• Key	insight:	Instead	of	generating	all	possible	negative	examples,	
randomly	sample	k	of	them	in	each	epoch	of	the	learning	loop
– That	is,	there	are	only	k	negatives	for	each	positive	example,	instead	of	the	entire	

vocabulary

55
We	will	visit	negative	sampling	in	the	first	homework

Word2vec	notes

There	are	many	other	tricks	that	are	needed	to	make	
this	work	and	scale
– A	scaling	term	in	the	loss	function	to	ensure	that	frequent	
words	do	not	dominate	the	loss	

– Hierarchical	softmax if	you	don’t	want	to	use	negative	
sampling

– A	clever	learning	rate	schedule
– Very	efficient	code

See	reading	for	more	details

56

This	lecture

• The	word2vec	models:	CBOW	and	Skipgram

• Connection	between	word2vec	and	matrix	
factorization

• GloVe

57

Recall:	matrix	factorization	for	embeddings

The	general	agenda

1. Construct	a	matrix	word-word	M	whose	entries	are	
some	function	extracted	from	data	involving	words	in	
context	(e.g.,	counts,	normalized	counts,	etc)

2. Factorize	the	matrix	using	SVD	to	produce	lower	
dimensional	embeddings of	the	words

3. Use	one	of	the	resulting	matrices	as	word	embeddings
– Or	some	combination	thereof

58

Word2vec	and	matrix	factorization

[Levy	and	Goldberg,	NIPS	2014]:	Skipgram negative	sampling	is	
implicitly	factorizing	a	specific	matrix	of	this	kind

59

Word2vec	and	matrix	factorization

[Levy	and	Goldberg,	NIPS	2014]:	Skipgram negative	sampling	is	
implicitly	factorizing	a	specific	matrix	of	this	kind

Two	key	points	to	note:

60

Word2vec	and	matrix	factorization

[Levy	and	Goldberg,	NIPS	2014]:	Skipgram negative	sampling	is	
implicitly	factorizing	a	specific	matrix	of	this	kind

Two	key	points	to	note:
1. The	entries	in	the	matrix	are	a	shifted	pointwise	mutual	

information	(SPPMI)	between	a	word	and	its	context	word.

𝑃𝑀𝐼 𝑤, 𝑐 = log
𝑝(𝑤, 𝑐)
𝑝 𝑤 𝑝(𝑐)

61

These	probabilities	are	computed	by	counting	
the	data	and	normalizing	them

Word2vec	and	matrix	factorization

[Levy	and	Goldberg,	NIPS	2014]:	Skipgram negative	sampling	is	
implicitly	factorizing	a	specific	matrix	of	this	kind

Two	key	points	to	note:

1. The	entries	in	the	matrix	are	a	shifted	pointwise	mutual	
information	(SPPMI)	between	a	word	and	its	context	word.

𝑃𝑀𝐼 𝑤, 𝑐 = log
𝑝(𝑤, 𝑐)
𝑝 𝑤 𝑝(𝑐)

𝑆𝑃𝑃𝑀𝐼 𝑤, 𝑐 = 𝑃𝑀𝐼 𝑤, 𝑐	 − log 𝑘

62

Word2vec	and	matrix	factorization

[Levy	and	Goldberg,	NIPS	2014]:	Skipgram negative	sampling	is	
implicitly	factorizing	a	specific	matrix	of	this	kind

Two	key	points	to	note:

2. The	matrix	factorization	method	is	not	truncated	SVD.	
– It	instead	minimizes	the	objective	function	to	compute	

the	factorized	matrices

63

This	lecture

• The	word2vec	models:	CBOW	and	Skipgram

• Connection	between	word2vec	and	matrix	
factorization

• GloVe [Pennington	et	al	2014]

64

What	matrix	to	factorize?

If	we	are	building	word	embeddings by	factorizing	a	
matrix,	what	matrix	should	we	consider?

• Word	counts	[Rhode	et	al	2005]
• Shifted	PPMI	(implicitly)	[Mikolov 2013,	Levy	&	Goldberg	2014]

• Another	answer:	log	co-occurrence	counts	[Pennington	
et	al	2014]

65

Co-occurrence	probabilities

Given	two	words	i and	j	that	occur	in	text,	their	co-occurrence	
probability	is	defined	as	the	probability	of	seeing	i in	the	context	of	j

𝑃 𝑗 𝑖 = 	
count(𝑗	in	context	of	𝑖)
∑ count(𝑘	in	context	if	𝑖)�
j

66

Co-occurrence	probabilities

Given	two	words	i and	j	that	occur	in	text,	their	co-occurrence	
probability	is	defined	as	the	probability	of	seeing	i in	the	context	of	j

𝑃 𝑗 𝑖 = 	
count(𝑗	in	context	of	𝑖)
∑ count(𝑘	in	context	if	𝑖)�
j

Claim:	If	we	want	to	distinguish	between	two	words,	it	is	not	enough	
to	look	at	their	co-occurrences,	we	need	to	look	at	the	ratio	of	their	
co-occurrences	with	other	words

– Formalizing	this	intuition	gives	us	an	optimization	problem

67

The	GloVe objective

Notation:	
• 𝑖	:	word,	𝑗	:	a	context	word
• wC:	The	word	embedding	for	𝑖
• 𝑐{:	The	context	embedding	for	j
• 𝑏Co, 𝑏{T:	Two	bias	terms:	word	and	context	specific
• 𝑋C{:	The	number	of	times	word	𝑖 occurs	in	the	context	of	𝑗

The	intuition:	
1. Construct	a	word-context	matrix	whose	 𝑖, 𝑗 eh entry	is	log	𝑋C{	

2. Find	vectors	wC, c}and	the	biases	𝑏C, 𝑐{ such	that	the	dot	product	of	
the	vectors	added	to	the	biases	approximates	the	matrix	entries

68

The	GloVe objective

Notation:	
• 𝑖	:	word,	𝑗	:	a	context	word
• wC:	The	word	embedding	for	𝑖
• 𝑐{:	The	context	embedding	for	j
• 𝑏Co, 𝑏{T:	Two	bias	terms:	word	and	context	specific
• 𝑋C{:	The	number	of	times	word	𝑖 occurs	in	the	context	of	𝑗

Objective

𝐽 = 	 1 𝑤Ca𝑐{ + 𝑏C + 𝑏{ − log𝑋C{
i

|c|

C,{D'

69

The	GloVe objective

Notation:	
• 𝑖	:	word,	𝑗	:	a	context	word
• wC:	The	word	embedding	for	𝑖
• 𝑐{:	The	context	embedding	for	j
• 𝑏Co, 𝑏{T:	Two	bias	terms:	word	and	context	specific
• 𝑋C{:	The	number	of	times	word	𝑖 occurs	in	the	context	of	𝑗

Objective

𝐽 = 	 1 𝑤Ca𝑐{ + 𝑏C + 𝑏{ − log𝑋C{
i

|c|

C,{D'

70

Problem:	Pairs	that	frequently	co-occur	tend	to	dominate	the	objective.

The	GloVe objective

Notation:	
• 𝑖	:	word,	𝑗	:	a	context	word
• wC:	The	word	embedding	for	𝑖
• 𝑐{:	The	context	embedding	for	j
• 𝑏Co, 𝑏{T:	Two	bias	terms:	word	and	context	specific
• 𝑋C{:	The	number	of	times	word	𝑖 occurs	in	the	context	of	𝑗

Objective

𝐽 = 	 1 𝑤Ca𝑐{ + 𝑏C + 𝑏{ − log𝑋C{
i

|c|

C,{D'

71

Problem:	Pairs	that	frequently	co-occur	tend	to	dominate	the	objective.

Answer:	Correct	for	this	by	adding	an	extra	term	that	prevents	this

The	GloVe objective

Notation:	
• 𝑖	:	word,	𝑗	:	a	context	word
• wC:	The	word	embedding	for	𝑖
• 𝑐{:	The	context	embedding	for	j
• 𝑏Co, 𝑏{T:	Two	bias	terms:	word	and	context	specific
• 𝑋C{:	The	number	of	times	word	𝑖 occurs	in	the	context	of	𝑗

Objective

𝐽 = 	 1 𝑓(𝑋C{) 𝑤Ca𝑐{ + 𝑏C + 𝑏{ − log𝑋C{
i

|c|

C,{D'

72

𝑓	:	A	weighting	function	that	assigns	lower	relative	importance	to	frequent	co-occurrences

GloVe:	Global	Vectors

Essentially	a	matrix	factorization	method

Does	not	compute	standard	SVD	though
1. Re-weighting	for	frequency
2. Two-way	factorization,	unlike	SVD	which	produces	𝑈, Σ, V
3. Bias	terms

Final	word	embeddings for	a	word:	The	average	of	the	
word	and	the	context	vectors	of	that	word

73

Summary

• We	saw	three	different	methods	for	word	embeddings

• Many,	many,	many	variants	and	improvements	exist

• Various	tunable	parameters/training	choices:
– Dimensionality	of	embeddings
– Text	for	training	the	embeddings
– The	context	window	size,	whether	it	should	be	symmetric
– And	the	usual	stuff:	Learning	algorithm	to	use,	the	loss	function,	

hyper-parameters

• See	references	for	more	details

74

