
Today’s Topics

• ?'48"; &589 '.@'99+-,#

• Motivation: machine neural translation for long sentences

• Decoder: attention

• Transformer overview

• Self-attention

 Slides Thanks to Dana Gurari

Converting Text to Vectors

1. Tokenize training data; convert data into sequence of tokens (e.g., data ->“This is tokening”)

2. Learn vocabulary

3. Encode data as vectors

Two common approaches:

https://nlpiation.medium.com/how-to-use-huggingfaces-transformers-pre-trained-tokenizers-e029e8d6d1fa

Converting Text to Vectors

1. Tokenize training data

2. Learn vocabulary by identifying all unique tokens in the training data

3. Encode data as vectors

Two common approaches:

https://nlpiation.medium.com/how-to-use-huggingfaces-transformers-pre-trained-tokenizers-e029e8d6d1fa

Token a b c *** 0 1 *** ! @ ***
Index 1 2 3 *** 27 28 *** 119 120 ***

Token a an at *** bat ball *** zipper zoo ***
Index 1 2 3 *** 527 528 *** 9,842 9,843 ***

1. Tokenize training data

2. Learn vocabulary by identifying all unique tokens in the training data

3. Encode data as one-hot vectors

https://github.com/DipLernin/Text_Generation

One-hot encodings

Input sequence of 40 tokens
representing characters or words

Converting Text to Vectors

Converting Text to Vectors

What are the pros and cons for using word tokens instead of character tokens?

- Pros: length of input/output sequences is shorter, simplifies learning semantics

- Cons: “UNK” word token needed for out of vocabulary words; vocabulary can be large

https://nlpiation.medium.com/how-to-use-huggingfaces-transformers-pre-trained-tokenizers-e029e8d6d1fa

Token a b c *** 0 1 *** ! @ ***
Index 1 2 3 *** 27 28 *** 119 120 ***

Token a an at *** bat ball *** zipper zoo ***
Index 1 2 3 *** 527 528 *** 9,842 9,843 ***

Converting Text to Vectors

Word level representations are more commonly used

https://nlpiation.medium.com/how-to-use-huggingfaces-transformers-pre-trained-tokenizers-e029e8d6d1fa

Token a b c *** 0 1 *** ! @ ***
Index 1 2 3 *** 27 28 *** 119 120 ***

Token a an at *** bat ball *** zipper zoo ***
Index 1 2 3 *** 527 528 *** 9,842 9,843 ***

Problems with One-Hot Encoding Words?

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.

• Huge memory burden
• Computationally expensive

Dimensionality = vocabulary size

e.g., English has ~170,000 words
with ~10,000 commonly used words

Limitation of One-Hot Encoding Words

• No notion of which words are similar, yet such understanding can improve generalization
• e.g., “walking”, “running”, and “skipping” are all suitable for “He was ____ to school.”

Walking Soap Fire Skipping

The distance between
all words is equal!

Today’s Topics

• Introduction to natural language processing

• Text representation

• Neural word embeddings

• Programming tutorial

Idea: Represent Each Word Compactly in a Space
Where Vector Distance Indicates Word Similarity

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.

Inspiration: Distributional Semantics

“The distributional hypothesis says that the meaning of a
word is derived from the context in which it is used, and
words with similar meaning are used in similar contexts.”

- Origins: Harris in 1954 and Firth in 1957

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.

Inspiration: Distributional Semantics

“The distributional hypothesis says that the meaning of a
word is derived from the context in which it is used, and
words with similar meaning are used in similar contexts.”

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.

Inspiration: Distributional Semantics

• What is the meaning of berimbau based on context?

• Idea: context makes it easier to understand a word’s meaning

Background music from a berimbau offers a beautiful escape.

Many people danced around the berimbau player.

I practiced for many years to learn how to play the berimbau.

https://capoeirasongbook.wordpress.com/instruments/berimbau/[Adapted from slides by Lena Voita]

Inspiration: Distributional Semantics

“The distributional hypothesis says that the meaning of a
word is derived from the context in which it is used, and
words with similar meaning are used in similar contexts.”

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.

• What other words could fit into these context?

Inspiration: Distributional Semantics

[Adapted from slides by Lena Voita]

1. Background music from a _______ offers a beautiful escape.

2. Many people danced around the _______ player.

3. I practiced for many years to learn how to play the _______.

1 1 1
0 0 0
0 0 0
1 1 1

Berimbau
Soap

Fire
Guitar

1 if a word can appear in the context
0 otherwise

1. 2. 3. Contexts

Hypothesis is that
words with similar
row values have
similar meanings

Inspiration: Distributional Semantics

“The distributional hypothesis says that the meaning of a
word is derived from the context in which it is used, and
words with similar meaning are used in similar contexts.”

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.

Approach

• Learn a dense (lower-dimensional) vector for each word by characterizing its
context, which inherently will reflect similarity/differences to other words

Berimbau and guitar are the closest word pairBerimbau Soap Fire Guitar

The distance between
each pair of words differs!

Note: many ways to measure
distance (e.g., cosine distance)

Approach

• Learn a dense (lower-dimensional) vector for each word by characterizing its
context, which inherently will reflect similarity/differences to other words

We embed words in a shared space so they can
be compared with a few features

What features would discriminate these words?

Berimbau Soap Fire Guitar

Approach

• Learn a dense (lower-dimensional) vector for each word by characterizing its
context, which inherently will reflect similarity/differences to other words

Berimbau Soap Fire Guitar

Wooden

Commodity
Cleaner
Food
Temperature
Noisy
Weapon

Potential, interpretable features

Approach: Learn Word Embedding Space

• An embedding space represents a finite number of words, decided in training
• A word embedding is represented as a vector indicating its context
• The dimensionality of all word embeddings in an embedding space match

• What is the dimensionality for the shown example?

…

Approach: Learn Word Embedding Space

• An embedding space represents a finite number of words, defined in training
• A word embedding is represented as a vector indicating its context
• The dimensionality of all word embeddings in an embedding space match

?

?
?
?
?
?
?

In practice, the learned discriminating
features are hard to interpret

Embedding Matrix

• The embedding matrix converts an input word into a dense vector

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.

Size of vocabulary

Berimbau Soap Fire Guitar …

Target dimensionality
(e.g., 5)

One hot encoding dictates
the word embedding to use

Embedding Matrix

• It converts an input word into a dense vector

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.

Size of vocabulary

Berimbau Soap Fire Guitar …

Target dimensionality
(e.g., 5)

A word’s embedding can efficiently be
extracted when we know the word’s index

Popular Word Embeddings

• Bengio method

• Word2vec (skip-gram model)

• And more…

Popular Word Embeddings

• Bengio method

• Word2vec (skip-gram model)

• And more…

Idea: Learn Word Embeddings That Help
Predict Viable Next Words

e.g.,

1. Background music from a _______

2. Many people danced around the _______

3. I practiced for many years to learn how to play the _______

Bengio et al. A Neural Probabilistic Language Model. JMLR 2003.

Task: Predict Next Word
Given Previous Ones

e.g.,

1. Background music from a _______

2. Many people danced around the _______

3. I practiced for many years to learn how to play the _______

Task: Predict Next Word
Given Previous Ones

Bengio et al. A Neural Probabilistic Language Model. JMLR 2003.

e.g., a vocabulary size of 17,000
was used in experiments

What is the dimensionality of the
output layer?

Architecture

Bengio et al. A Neural Probabilistic Language Model. JMLR 2003.

Embedding matrix:

Word embeddings:

Architecture

Bengio et al. A Neural Probabilistic Language Model. JMLR 2003.

e.g., a vocabulary size of 17,000
was used with embedding sizes of
30, 60, and 100 in experiments

Assume a 30-d word embedding
- what are the dimensions of the

embedding matrix C?

30 x 17,000 (i.e., 510,000 weights)

Architecture

Bengio et al. A Neural Probabilistic Language Model. JMLR 2003.

e.g., a vocabulary size of 17,000
was used with embedding sizes of
30, 60, and 100 in experiments

Assume a 30-d word embedding
- what are the dimensions of each

word embedding?

1 x 30

Architecture

Bengio et al. A Neural Probabilistic Language Model. JMLR 2003.

Projection layer followed by a
hidden layer with non-linearity

Training

Bengio et al. A Neural Probabilistic Language Model. JMLR 2003.

Input: tried 1, 3, 5, and 8 input words
and used 2 datasets with ~1 million and
~34 million words respectively

Use sliding window on input data; e.g., 3 words

Background music from a berimbau offers a
beautiful escape…

Training

Bengio et al. A Neural Probabilistic Language Model. JMLR 2003.

Input: tried 1, 3, 5, and 8 input words
and used 2 datasets with ~1 million and
~34 million words respectively

Use sliding window on input data; e.g., 3 words

Background music from a berimbau offers a
beautiful escape…

Training

Bengio et al. A Neural Probabilistic Language Model. JMLR 2003.

Input: tried 1, 3, 5, and 8 input words
and used 2 datasets with ~1 million and
~34 million words respectively

Use sliding window on input data; e.g., 3 words

Background music from a berimbau offers a
beautiful escape…

Training

Bengio et al. A Neural Probabilistic Language Model. JMLR 2003.

Input: tried 1, 3, 5, and 8 input words
and used 2 datasets with ~1 million and
~34 million words respectively

Use sliding window on input data; e.g., 3 words

Background music from a berimbau offers a
beautiful escape…

Training

Bengio et al. A Neural Probabilistic Language Model. JMLR 2003.

Input: tried 1, 3, 5, and 8 input words
and used 2 datasets with ~1 million and
~34 million words respectively

Cost function:
minimize cross
entropy loss plus
regularization (L2
weight decay)

Word embedding iteratively updated

Summary: Word Embeddings Are Learned that
Support Predicting Viable Next Words

e.g.,

1. Background music from a _______

2. Many people danced around the _______

3. I practiced for many years to learn how to play the _______

Popular Word Embeddings

• Bengio method

• Word2vec (skip-gram model)

• And more…

Idea: Learn Word Embeddings That Know
What Are Viable Surrounding Words

e.g.,

1. ___ ___ ___ ___ berimbau ___ ___ ___ ___

2. ___ berimbau ___

Mikolov et al. Efficient Estimation of Word Representations in Vector Space. arXiv 2013.

Task: Given Word, Predict
a Nearby Word

e.g.,

1. ___ ___ ___ ___ berimbau ___ ___ ___ ___

2. ___ berimbau ___

Task: Given Word, Predict
a Nearby Word

https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b

Architecture

Embedding
matrix

Word
embeddings

https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b

Architecture

Embedding
matrix

e.g., a vocabulary size of 10,000 is
used with embedding sizes of 300

What are the dimensions of the
embedding matrix?

300 x 10,000 (i.e., 3,000,000 weights)

https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b

Architecture

e.g., a vocabulary size of 10,000 is
used with embedding sizes of 300

What are the dimensions of each
word embedding?

1 x 300

Word
embeddings

https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b

Architecture

A shallower, simpler architecture
than the Bengio approach (i.e.,
lacks a non-linear hidden layer)!

https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b

Training

https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b

Sliding window run on input data to
sample neighbors of each target
word (e.g., using window size of 2)

Extra Tricks: More Efficient Representations

1. Change output layer to hierarchical softmax

https://www.cs.princeton.edu/courses/archive/spring20/cos598C/lectures/lec2-word-embeddings.pdf

2. Reformulate problem to
perform negative sampling

Binary classification: predict for a
given word if another word is nearby

• Positive examples: observed target
and neighboring words

• Negative examples: randomly
sampled other words

Mikolov et al. Distributed Representations of Words and Phrases and their Compositionality. Neurips 2013.

Hyperparameters: What Works Well?

• Word embedding dimensionality?
• Dimensionality set between 100 and 1,000

• Context window size?
• ~10

Mikolov et al. Efficient Estimation of Word Representations in Vector Space. arXiv 2013.

Very Exciting/Surprising Finding

Mikolov et al. Efficient Estimation of Word Representations in Vector Space. arXiv 2013.

• Vector arithmetic with word embeddings can solves many analogies
(Full test list: http://download.tensorflow.org/data/questions-words.txt)

• Semantic relationships (meaning of words in a sentence):
• Italy + (Paris - France) = Rome

• Syntactic relationships (rules for words in a sentence)
• smallest + (big – small) = biggest
• think + (read – reading) = thinking
• mouse + (dollars – dollar) = mice

http://download.tensorflow.org/data/questions-words.txt

Summary: Word Embeddings Are Learned that
Support Predicting Viable Surrounding Words!

e.g.,

1. ___ ___ ___ ___ berimbau ___ ___ ___ ___

2. ___ berimbau ___

Popular Word Embeddings

• Bengio method

• Word2vec (skip-gram model)

• And more…

Variants for Learning Word Embeddings

• Capture global context rather than just local context of previous or
surrounding words; e.g.,
• GloVe for Global Vectors (Pennington et al., 2014)

• Capture that the same word can have different word vectors under
different contexts; e.g.,
• Elmo for embeddings from language models (Peters et al., arXiv 2018)

• Support multiple languages; e.g.,
• Fast-text (Bojanowski et al., 2016)

Popular Word Embeddings

• Bengio method

• Word2vec (skip-gram model)

• And more…

Recap of Big Picture

• Convert words into compact vectors as input to neural networks; e.g., RNNs

• Implementation detail: may need to learn extra tokens such as “UNK” and “EOS” to
represent out of vocabulary words and signify end of the string respectively

• Also, can fine-tune word embedding matrices for different applications
https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/

Word Embedding Limitations/Challenges

• Distinguish antonyms from synonyms
• Antonyms are learned near each other in the embedding space since they are

commonly used in similar contexts: “I hate math” vs “I love math” or “Take a
right turn” vs “Take a left turn”

• Gender bias:

Word Embedding Limitations/Challenges

• Distinguish antonyms from synonyms
• Antonyms are learned near each other in the embedding space since they are

commonly used in similar contexts: “I hate math” vs “I love math” or “Take a
right turn” vs “Take a left turn”

• Gender bias:

Bolukbasi et al. Neurips 2016.

Word Embedding Limitations/Challenges

• Distinguish antonyms from synonyms
• Antonyms are learned near each other in the embedding space since they are

commonly used in similar contexts: “I hate math” vs “I love math” or “Take a
right turn” vs “Take a left turn”

• Gender bias

• What other language biases do you think could be learned?

Bolukbasi et al. Neurips 2016.

Task: Machine Translation

Pioneering Neural Network Approach

Input encoded into a
fixed-size vector

Vector decoded
into a translation

Image source: https://smerity.com/articles/2016/google_nmt_arch.html
seq2seq: Sutskever et al. Sequence to Sequence Learning with Neural Networks. Neurips 2014.

Predictions stop
at <EOS> token

Pioneering Neural Network Approach

Encoded fixed-length vector must
summarize all information about the
input that is needed for translation

Image source: https://smerity.com/articles/2016/google_nmt_arch.html
Sutskever et al. Sequence to Sequence Learning with Neural Networks. Neurips 2014.

Analysis of Two Models

Cho et al. On the Properties of Neural Machine Translation: Encoder–Decoder Approaches. SSST 2014.

What performance trend is observed for inputs (source) and outputs
(reference) as the number of words in each sentence grows?

(larger scores
are better)

Analysis of Two Models

Cho et al. On the Properties of Neural Machine Translation: Encoder–Decoder Approaches. SSST 2014.

Performance drops for longer sentences!

(larger scores
are better)

Problem: Performance Drops As Sentence
Length Grows

Hypothesis: fixed-length vector lacks
sufficient capacity to capture all
relevant information for long sentences

Image source: https://smerity.com/articles/2016/google_nmt_arch.html
Cho et al. On the Properties of Neural Machine Translation: Encoder–Decoder Approaches. SSST 2014.

Idea to Preserve Performance for Long
Sentences: Attention

Image source: https://smerity.com/articles/2016/google_nmt_arch.html

Do not require encoder
to summarize input

Idea to Preserve Performance for Long
Sentences: Attention

Image source: https://smerity.com/articles/2016/google_nmt_arch.html

Instead, have the encoder pass all input’s
hidden states to the decoder to decide
which to use for prediction at each time step

Idea to Preserve Performance for Long
Sentences: Attention

Decoder decides which inputs are needed for prediction at each time step;
e.g., “hard attention” focuses on one input

Input Target

t = 1 t = 2 t = 3 t = 4

Note: while word order between the input and target align in this example, it can differ

https://deeplearning.cs.cmu.edu/F21/document/slides/lec18.attention.pdf

Idea to Preserve Performance for Long
Sentences: Attention

Decoder decides which inputs are needed for prediction at each time step;
e.g., “hard attention” focuses on one input

https://deeplearning.cs.cmu.edu/F21/document/slides/lec18.attention.pdf

Input Target

t = 1 t = 2 t = 3 t = 4

Limitations: a target word relies on information about
one input word and “hard attention” is not differentiable

Idea to Preserve Performance for Long
Sentences: Attention

Input Target

t = 1

Decoder decides which inputs are needed for prediction at each time step;
e.g., “soft attention” uses a weighted combination of the input

Idea to Preserve Performance for Long
Sentences: Attention

Input Target

t = 1

Decoder decides which inputs are needed for prediction at each time step;
e.g., “soft attention” uses a weighted combination of the input

t = 2

Idea to Preserve Performance for Long
Sentences: Attention

Input Target

t = 1

Decoder decides which inputs are needed for prediction at each time step;
e.g., “soft attention” uses a weighted combination of the input

t = 2 t = 3

Idea to Preserve Performance for Long
Sentences: Attention

Input Target

t = 1

Decoder decides which inputs are needed for prediction at each time step;
e.g., “soft attention” uses a weighted combination of the input

t = 2 t = 3 t = 4

“Soft” Attention: Challenge

Input Target

t = 1

Decoder decides which inputs are needed for prediction at each time step;
e.g., “soft attention” uses a weighted combination of the input

t = 2 t = 3 t = 4

How should weights be chosen for each input?

“Soft” Attention: Challenge

Input Target

t = 1

Decoder decides which inputs are needed for prediction at each time step;
e.g., “soft attention” uses a weighted combination of the input

t = 2 t = 3 t = 4

Could collect manual annotations and then incorporate into the loss function that
predicted weights should match ground truth weights… but this approach is impractical

“Soft” Attention: Challenge

Input Target

t = 1

Decoder decides which inputs are needed for prediction at each time step;
e.g., “soft attention” uses a weighted combination of the input

t = 2 t = 3 t = 4

Instead, have the model learn
how to weight each input!

Solution

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

2. At each decoder time step,
attention weights are computed
that determine each input’s
relevance for the prediction

3. At each decoder time step, a
prediction is made based on the
weighted sum of the inputs

1. Encoder produces hidden
state for every input

Solution

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

2. At each decoder time step,
attention weights are computed
that determine each input’s
relevance for the prediction

3. At each decoder time step, a
prediction is made based on the
weighted sum of the inputs

Measuring Each
Input’s Influence
on the Prediction

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

How many inputs
are in this example?

Measuring Each
Input’s Influence
on the Prediction

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

At each decoder time step, the
similarity between the
decoder’s hidden state and
each input’s hidden state is
computed to decide each
input’s score at the time step

Measuring Each
Input’s Influence
on the Prediction

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

At each decoder time step, the
similarity between the
decoder’s hidden state and
each input’s hidden state is
computed to decide each
input’s score at the time step

Measuring Each
Input’s Influence
on the Prediction

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

At each decoder time step, the
similarity between the
decoder’s hidden state and
each input’s hidden state is
computed to decide each
input’s score at the time step

Measuring Each
Input’s Influence
on the Prediction

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

At each decoder time step, the
similarity between the
decoder’s hidden state and
each input’s hidden state is
computed to decide each
input’s score at the time step

Measuring Each
Input’s Influence
on the Prediction

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

How to measure the similarity
between hidden states of the
decoder and input?

Similarity Measure for Hidden States of the
Decoder and Encoder

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Similarity Measure for Hidden States of the
Decoder and Encoder

• Many options (function should be differentiable)

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Similarity Measure for Hidden States of the
Decoder and Encoder

• Many options (function should be differentiable)

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

What model parameters must be learned when using dot-product?

Similarity Measure for Hidden States of the
Decoder and Encoder

• Many options (function should be differentiable)

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

What model parameters must be learned when using bilinear?

Similarity Measure for Hidden States of the
Decoder and Encoder

• Many options (function should be differentiable)

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

What model parameters must be learned when using multi-layer perceptron?

Similarity Measure for Hidden States of the
Decoder and Encoder

• Many options (function should be differentiable)

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Model parameters that must be learned
(no parameters)

Measuring Each
Input’s Influence
on the Prediction

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

After computing the
similarity scores for each
input, then apply softmax so
all inputs’ weights sum to 1

Measuring Each
Input’s Influence
on the Prediction

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

We now have our
attention weights!

Measuring Each
Input’s Influence
on the Prediction

Intuitively:
Target

t = 4

Input

The model can weight each
input at each time step!

Solution

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

2. At each decoder time step,
attention weights are computed
that determine each input’s
relevance for the prediction

3. At each decoder time step, a
prediction is made based on the
weighted sum of the inputs

Word Prediction

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

We compute at time step t for all
n inputs a weighted sum:

The influence of inputs are
amplified for large attention
weights and repressed otherwise

Word Prediction

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

Final prediction made not
only using the input word and
the previous hidden state, but
now also the context vector

Word Prediction

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

Many options exist for how
to combine the input word,
previous hidden state, and
context vector

Solution

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

What stays the same at
each decoder time step?
- input’s hidden state

What changes at each
decoder time step?
- decoder’s hidden state
- and so attention weights

and context vector

Summary: Attention
(Computations at Each Decoder Step)

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Decoder decides which
inputs are needed for
prediction at each time
step with “soft attention”,
which results in a weighted
combination of the input

Summary: Attention
(Computations at Each Decoder Step)

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

All parts are differentiable
which means end-to-end
training is possible

Popular Choices for Encoding Input

• Bi-directional RNN

• Stacked RNNs

Popular Choices for Encoding Input

• Bi-directional RNN

• Stacked RNNs

Many Options for How to Encode Input

https://towardsdatascience.com/understanding-bidirectional-rnn-in-pytorch-5bd25a5dd66

• Two RNNs where input is fed forward and backward respectively and
then the hidden states (typically) are concatenated into a hidden state

What are advantages of a bi-directional RNN compared to a single RNN?

Many Options for How to Encode Input

https://towardsdatascience.com/understanding-bidirectional-rnn-in-pytorch-5bd25a5dd66

• Two RNNs where input is fed forward and backward respectively and
then the hidden states (typically) are concatenated into a hidden state

Can use information from the past and future to make predictions: e.g., can resolve
for "Teddy is a …?” if Teddy refers to a “bear” or former US President Roosevelt

Many Options for How to Encode Input

https://towardsdatascience.com/understanding-bidirectional-rnn-in-pytorch-5bd25a5dd66

• Two RNNs where input is fed forward and backward respectively and
then the hidden states (typically) are concatenated into a hidden state

What are disadvantages of a bi-directional RNN compared to a single RNN?

Many Options for How to Encode Input

https://towardsdatascience.com/understanding-bidirectional-rnn-in-pytorch-5bd25a5dd66

• Two RNNs where input is fed forward and backward respectively and
then the hidden states (typically) are concatenated into a hidden state

Entire sequence must be observed to make a prediction (e.g., unsuitable for text prediction)

Bahdanau’s
Neural Machine
Translation

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3
Bahdanau et al. Neural Machine Translation by Jointly Learning to Align and Translate. ICLR 2015

Bi-directional RNN

Popular Choices for Encoding Input

• Bi-directional RNN

• Stacked RNNs

Luong’s Neural
Machine Translation

2 layers

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3#df28
Luong et al. Effective Approaches to Attention-based Neural Machine Translation. EMNLP 2015

Popular Choices for Encoding Input

• Bi-directional RNN

• Stacked RNNs

Google’s Neural
Machine Translation

Wu et al. Google’s Neural Machine Translation System: Bridging
the Gap between Human and Machine Translation. arXiv 2016.

8 layers with 1rst
layer bi-directional

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3#df28

Popular Choices for Encoding Input

• Bi-directional RNN

• Stacked RNNs

Analysis of Attention Models

Bahdanau et al. Neural Machine Translation by Jointly Learning to Align and Translate. ICLR 2015

(larger scores
are better)

What performance trend is observed as the number of words in the input sentence grows?

Analysis of Attention Models

Performance no longer drops for longer sentences!
Bahdanau et al. Neural Machine Translation by Jointly Learning to Align and Translate. ICLR 2015

(larger scores
are better)

Visualizing Attention

Values are 0 to 1, with whiter pixels indicating larger attention weights
Bahdanau et al. Neural Machine Translation by Jointly Learning to Align and Translate. ICLR 2015

Input sentence

O
ut

pu
t s

en
te

nc
e

Input sentence

O
ut

pu
t s

en
te

nc
e

Visualizing Attention

What insights can we glean from these examples?
Bahdanau et al. Neural Machine Translation by Jointly Learning to Align and Translate. ICLR 2015

Input sentence

O
ut

pu
t s

en
te

nc
e

Input sentence

O
ut

pu
t s

en
te

nc
e

Visualizing Attention

Bahdanau et al. Neural Machine Translation by Jointly Learning to Align and Translate. ICLR 2015

Input sentence

O
ut

pu
t s

en
te

nc
e

Input sentence

O
ut

pu
t s

en
te

nc
e

While a linear alignment between input and output sentences is common,
there are exceptions (e.g., order of adjectives and nouns can differ)

Visualizing Attention

Bahdanau et al. Neural Machine Translation by Jointly Learning to Align and Translate. ICLR 2015

Input sentence

O
ut

pu
t s

en
te

nc
e

Input sentence

O
ut

pu
t s

en
te

nc
e

Output words are often informed by more than one input word;
e.g., “man” indicates translation of “the” to l’ instead of le, la, or les

Visualizing Attention

Bahdanau et al. Neural Machine Translation by Jointly Learning to Align and Translate. ICLR 2015

Input sentence

O
ut

pu
t s

en
te

nc
e

Input sentence

O
ut

pu
t s

en
te

nc
e

It naturally handles different input and output lengths
(e.g., 1 extra output word for both examples)

Today’s Topics

• Transformer overview

• Self-attention

• Multi-head attention

• Common transformer ingredients

• Pioneering transformer: machine translation

Goal: Model Sequential Data (Recall RNN)

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

Each hidden state is a function of the previous hidden state

Problem: RNNs Use Sequential Computation

Seemingly hard for RNNs to carry information through hidden
states across many time steps and train/testing is slow

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

Idea: Model Sequential Data Without Recurrence

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

Replace sequential hidden states for capturing knowledge of other inputs with a new
representation of each input that shows its relationship to all other inputs (i.e., self-attention)

Transformer Key Idea: Self-Attention

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

New representation of each token in a sequence showing its relationship to all tokens; e.g.,

Transformer Key Idea: Self-Attention

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

Arrow thickness is indicative of attention weight

New representation of each token in a sequence showing its relationship to all tokens; e.g.,

Transformer Key Idea: Self-Attention

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

A large attention score means the other word will
strongly inform the new representation of the word

New representation of each token in a sequence showing its relationship to all tokens; e.g.,

Transformer Intuition

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

What does bank mean in this sentence?

Transformer Intuition

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

What does bank mean in this sentence?
- the new representation of the word disambiguates the meaning by identifying other
relevant words (e.g., high attention score with “river”)

vs

Transformer vs RNN (Intuition)

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

Meaning depends on other input words

Transformer vs RNN (Intuition)

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

Meaning depends on other input words

Transformer: A Suggested Definition

“Any architecture designed to process a connected
set of units—such as the tokens in a sequence or
the pixels in an image—where the only interaction
between units is through self-attention.”

http://peterbloem.nl/blog/transformers

Today’s Topics

• Transformer overview

• Self-attention

• Multi-head attention

• Common transformer ingredients

• Pioneering transformer: machine translation

Self-Attention: Outcome

New representation of each token in a sequence showing its relationship to all tokens

https://towardsdatascience.com/self-attention-5b95ea164f61

Self-Attention: Outcome

New representation of each token in a sequence showing its relationship to all tokens; e.g.,

Rashonda accepted a job in deep learning because she loves the topic

Self-Attention: Outcome

New representation of each token in a sequence showing its relationship to all tokens; e.g.,

Rashonda accepted a job in deep learning because she loves the topic

Self-Attention: Outcome

New representation of each token in a sequence showing its relationship to all tokens; e.g.,

Rashonda accepted a job in deep learning because she loves the topic

And so on for remaining words…

Self-Attention: Disambiguates Word Meanings

A better representation of “she” would
encode information about “Rashonda”

New representation of each token in a sequence showing its relationship to all tokens; e.g.,

Rashonda accepted a job in deep learning because she loves the topic

Self-Attention: Disambiguates Word Meanings

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

A better representation of “bank” would
encode information about “river”

New representation of each token in a sequence showing its relationship to all tokens; e.g.,

I arrived at the bank across the river

Self-Attention vs General Attention

Input Target

General attention
Relates tokens from different sources

Self-attention
Relates tokens from the same source

t=1

Computing Self-Attention: Similar Approach
to How We Compute General Attention

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Key difference 1: input for self-attention

Key difference 2: attention
score multiplied with a value
derived from the input

Weighted sum of values

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

New representation of each input token to
reflect each one’s relationship to all tokens

Input tokens

Computing Self-Attention: Example

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

- How many inputs are in this example?
- What is each one’s dimensionality?

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Three vectors are derived for
each input by multiplying
with three weight matrices
(learned during training):
query, key, and value

Query 2:Query 1: Query 3:

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

e.g., key weights

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

x x x

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

e.g., value weights

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

x x x

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

e.g., query weights

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 2:Query 1: Query 3:

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a
Query 2:Query 1: Query 3:

How many weight matrices
are learned in this example?

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a
Query 2:Query 1: Query 3:

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Why do we learn the three
weight matrices?

For each input, 2 of the
derived vectors are used to
compute attention weights
(query and key) and the 3rd is
information passed on for the
new representation (value)

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 2:Query 1: Query 3:

We now will examine how to
find the new representation
for the first input.

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

1 0 2 0
1
1

x = ?

Attention score: dot product
of query with all keys to
identify relevant tokens; e.g.,

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

1 0 2 4
4
0

x = ?

Attention score: dot product
of query with all keys to
identify relevant tokens; e.g.,

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

1 0 2 2
3
1

x = ?

Attention score: dot product
of query with all keys to
identify relevant tokens; e.g.,

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

Why dot product? Indicates
similarity of two vectors
- Match = 1 (i.e., cos(0))
- Opposites = -1 (i.e., cos(180))

https://towardsdatascience.com/
self-attention-5b95ea164f61

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

Can also use similarity
measures other than
the dot product

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

= softmax([2, 4, 4])

= [0.0, 0.5, 0.5])

Attention weights: softmax
scores for all inputs to quantify
each token’s relevance; e.g., 0.0 0.5 0.5

To which input(s) is input 1
most related?

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

0.0 0.5 0.5

Compute new representation
of input token that reflects
entire input:

1. Attention weights x Values

0.0 0.0 0.0 1.0 4.0 0.0 1.0 3.0 1.0

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

0.0 0.5 0.5

Compute new representation
of input token that reflects
entire input:

1. Attention weights x Values

2. Sum all weighted vectors

0.0 0.0 0.0 1.0 4.0 0.0 1.0 3.0 1.0

2.0 7.0 1.5

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

0.0 0.5 0.5Attention weights amplify
input representations (values)
that we want to pay attention
to and repress the rest

0.0 0.0 0.0 1.0 4.0 0.0 1.0 3.0 1.0

2.0 7.0 1.5

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 2:Query 1: Query 3:

Repeat the same process for
each remaining input token

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 2:

1. Compute attention weights
- Softmax resulting 3 scores

from query x keys

0.0 1.0 0.0

To which input(s) is input 2
most related?`

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 2:

1. Compute attention weights
- Softmax resulting 3 scores

from query x keys

2. Compute weighted sum of
values using attention scores

0.0 1.0 0.0

0.0 0.0 0.0 2.0 8.0 0.0 0.0 0.0 0.0

2.0 8.0 0.0

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 2:Query 1: Query 3:

Repeat the same process for
each remaining input token

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 3:

1. Compute attention weights
- Softmax resulting 3 scores

from query x keys

0.0 0.9 0.1

To which input(s) is input 3
most related?

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 2:

0.0 0.9 0.1

0.0 0.0 0.0 1.8 7.2 0.0 0.2 0.6 0.3

2.0 7.8 0.3

1. Compute attention weights
- Softmax resulting 3 scores

from query x keys

2. Compute weighted sum of
values using attention scores

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 2:Query 1: Query 3:

2.0 7.8 0.32.0 8.0 0.02.0 7.0 1.5

http://jalammar.github.io/illustrated-transformer/

Each row is an
input token:

Step 1

Efficient Computation for Self-Attention

Each row is a query

Each row is a key

Each row is a value

http://jalammar.github.io/illustrated-transformer/

Step 2Step 1

Implementation detail: scaling
down the size helps preserve
gradients needed for training; k is
dimensionality of the key vector

Efficient Computation for Self-Attention

Self-Attention vs RNN: Propagates Information
About Other Inputs Without Recurrent Units

http://www.wildml.com/2015/09/recurrent-neural-
networks-tutorial-part-1-introduction-to-rnns/ https://towardsdatascience.com/self-attention-5b95ea164f61

Today’s Topics

• Transformer overview

• Self-attention

• Multi-head attention

• Common transformer ingredients

• Pioneering transformer: machine translation

Multi-head Attention

• Goal: enable each token to relate
to other tokens in multiple ways

• Key idea: multiple self-attention
mechanisms, each with their own
key, value and query matrices

https://sebastianraschka.com/pdf/lecture-notes/stat453ss21/L19_seq2seq_rnn-transformers__slides.pdf

Multi-head Attention

http://jalammar.github.io/illustrated-transformer/

1) Create query, key, and value
vectors for all attentions heads

2) Compute new
input representations

3) Condense all representations
into a single representation by
concatenating z-s and
multiplying by a weight matrix

Trained Multi-head Attention Examples

http://jalammar.github.io/illustrated-transformer/

Figure shows two columns of attention weights
for the first two attention heads
- Darker values signify larger attention scores

What does “it” focus on most in the first
attention head?
- The animal (e.g., represents what is “it”)

What does “it” focus on most in the second
attention head?
- tired (e.g., represents how “it” feels)

Trained Multi-head Attention Examples

http://jalammar.github.io/illustrated-transformer/

Figure shows five columns of attention weights
for five attention heads
- Darker values signify larger attention scores

Attention weights may be hard to interpret

Today’s Topics

• Transformer overview

• Self-attention

• Multi-head attention

• Common transformer ingredients

• Pioneering transformer: machine translation

http://peterbloem.nl/blog/transformers

Typical Transformer Block

Architectures often chain together multiple
transformer blocks, like that shown here

http://peterbloem.nl/blog/transformers

Typical Transformer Block

Layer normalization and residual connections
improve training (i.e., faster and better results)

http://peterbloem.nl/blog/transformers

Typical Transformer Block

Feedforward layer per input

http://peterbloem.nl/blog/transformers

Typical Transformer Block

Where are non-linearities introduced in this block?

http://peterbloem.nl/blog/transformers

Typical Transformer Block

Non-linearities introduced in the softmax of self-
attention, activation functions in MLP, and layer norms

http://peterbloem.nl/blog/transformers

Challenge: Transformers Lack Sensitivity
to the Order of the Input Tokens

Input observed as a set and so shuffling the order of input
tokens results in the same outputs except in the same
shuffled order (i.e. self-attention is permutation equivariant)

Solution: Add Position as Input to Transformer

• Options:
• Position embeddings: created by training with sequences of every length during training
• Position encodings: a function mapping positions to vectors that the network learns to

interpret (enables generalization to lengths not observed during training)

http://jalammar.github.io/illustrated-transformer/

Today’s Topics

• Transformer overview

• Self-attention

• Multi-head attention

• Common transformer ingredients

• Pioneering transformer: machine translation

Target Application: Machine Translation

https://jalammar.github.io/illustrated-transformer/

Architecture

• Key Ingredient
• Self-Attention in the encoder and decoder

• Other ingredients
• Positional encoding
• Layer normalization
• Residual connections
• Feed forward layers

• Nx = 6 chained blocks (encoder & decoder)

Vaswani et al. Attention Is All You Need. Neurips 2017.

Architecture

The decoder performs multi-head
attention on the encoder output

Vaswani et al. Attention Is All You Need. Neurips 2017.

