Today’s Topics

* Neural word embeddings
- Motivation: machine neural translation for long sentences

* Decoder: attention

 Transformer overview

« Self-attention

Slides Thanks to Dana Gurari

Converting Text to Vectors

1. Tokenize training data; convert data into sequence of tokens (e.g., data ->“This is tokening”)

2. Learn vocabulary

3. Encode data as vectors

Two common approaches:

Character Level

T h 1 s 1 s t o k e n 1 z 1 n ¢

Word Level

This Is tokenizing

https://nlpiation.medium.com/how-to-use-huggingfaces-transformers-pre-trained-tokenizers-e029e8d6d1fa

Converting Text to Vectors

1. Tokenize training data
2. Learn vocabulary by identifying all unigue tokens in the training data

3. Encode data as vectors

Two common approaches:

Xk %k k kK %k k | k 3k k
Character Level Token |a |b |c 0 1 i @

Index |1 |2 |3 |*** |27 |28 |*** |119 |120 | ***

Token |a [an |at | *** |bat |ball | *** |zipper |zoo |***
-W d Level

https://nlpiation.medium.com/how-to-use-huggingfaces-transformers-pre-trained-tokenizers-e029e8d6d1fa

Converting Text to Vectors

1. Tokenize training data
2. Learnvocabulary by identifying all unique tokens in the training data

3. Encode data as one-hot vectors
One-hot encodings

Input sequence of 40 tokens
representing characters or words

recurrent o e 6 & 198 l/ w W /*\l
layer v v v v vevew

'/A\l v'/ﬁ\‘ /A\'u e o /A \ / \ / ~
softmax [N X) 59 ()

/’\/’_\/\ /‘“\.,/\/\
OUtDUt '\ y - / \ P 59 l_/ |\ y. \ /)

https://github.com/DipLernin/Text_Generation

Converting Text to Vectors

What are the pros and cons for using word tokens instead of character tokens?

Xk %k k Xk %k k | k 3k k
Character Level Token |a |b |c 0 1 i @

Index |1 |2 |3 |*** |27 |28 |*** |119 |120 | ***

- Token |a |an |at | *** |bat |ball | *** | zipper | zoo ok

word Leve Index |1 |2 |3 [*** [527[528 |*** 9,842 [9,843 [*»

- Pros: length of input/output sequences is shorter, simplifies learning semantics

- Cons: “UNK” word token needed for out of vocabulary words; vocabulary can be large

https://nlpiation.medium.com/how-to-use-huggingfaces-transformers-pre-trained-tokenizers-e029e8d6d1fa

Converting Text to Vectors

Token |a |[b |c [*** |0 |1 |*** ! @ | ***

Index |1 |2 |3 |*** |27 |28 |*** |119 |120 | ***

Character Level

Zipper
9,842

Word Level

Word level representations are more commonly used

https://nlpiation.medium.com/how-to-use-huggingfaces-transformers-pre-trained-tokenizers-e029e8d6d1fa

Problems with One-Hot Encoding Words?

Dimensionality = vocabulary size
0 * Huge memory burden

e.g., English has ~170,000 words

0 . : :
with ~10,000 commonly used words Computationally expensive

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.

Limitation of One-Hot Encoding Words

* No notion of which words are similar, yet such understanding can improve generalization

n «u

e e.g., “walking”, “running”, and “skipping” are all suitable for “He was to schoo

I”

Walking Soap Fire Skipping

. The distance between
all words is equal!

Today’s Topics

* Neural word embeddings

|dea: Represent Each Word Compactly in a Space
Where Vector Distance Indicates Word Similarity

0.23

0.41

300 dimensional
0.33 continuous

representation

100k dimensional
(one-hot encoded) 0

0.01

0.56

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.

Inspiration: Distributional Semantics

“The distributional hypothesis says that the meaning of a
word is derived from the context in which it is used, and
words with similar meaning are used in similar contexts.”

- Origins: Harris in 1954 and Firth in 1957

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.

Inspiration: Distributional Semantics

“The distributional hypothesis says that the meaning of a
word is derived from the context in which it is used, and
words with similar meaning are used in similar contexts.”

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.

Inspiration: Distributional Semantics

 What is the meaning of berimbau based on context?

Background music from a berimbau offers a beautiful escape.
Many people danced around the berimbau player.

I practiced for many years to learn how to play the berimbau.

* |ldea: context makes it easier to understand a word’s meaning

1

L /) 217 & 0\ <
o ﬁ / & .‘ B A 2% 4
o, 2006; .:,‘M A / Wk e V\,r\xrw.africamuseum.rbe

[Adapted from slides by Lena Voita] https://capoeirasongbook.wordpress.com/instruments/berimbau/

Inspiration: Distributional Semantics

“The distributional hypothesis says that the meaning of a
word is derived from the context in which it is used, and
words with similar meaning are used in similar contexts.”

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.

Inspiration: Distributional Semantics

e What other words could fit into these context?

1. Background music from a offers a beautiful escape.

2. Many people danced around the player.

3. I practiced for many years to learn how to play the

1. 2. 3. } Contexts
1

Hypothesis is that Berimbau 1 1

words with similar Soap 0 O O 1 if a word can appear in the context
row values have e 0 0 o | Ootherwise

similar meanings Guitar 11 1

[Adapted from slides by Lena Voita]

Inspiration: Distributional Semantics

“The distributional hypothesis says that the meaning of a
word is derived from the context in which it is used, and
words with similar meaning are used in similar contexts.”

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.

Approach

* Learn a dense (lower-dimensional) vector for each word by characterizing its
context, which inherently will reflect similarity/differences to other words

Berimbau Soap

Berimbau and guitar are the closest word pair

The distance between
each pair of words differs!

Note: many ways to measure
distance (e.g., cosine distance)

Approach

* Learn a dense (lower-dimensional) vector for each word by characterizing its
context, which inherently will reflect similarity/differences to other words

Berimbau

Soap

Fire

Guitar

We embed words in a shared space so they can
be compared with a few features

What features would discriminate these words?

Approach

* Learn a dense (lower-dimensional) vector for each word by characterizing its
context, which inherently will reflect similarity/differences to other words

Berimbau Soap Fire Guitar
. Wooden
Commodity
. Cleaner
Food — Potential, interpretable features

. Temperature
. Noisy

Weapon

Approach: Learn Word Embedding Space

 An embedding space represents a finite number of words, decided in training
A word embedding is represented as a vector indicating its context

* The dimensionality of all word embeddings in an embedding space match
 What is the dimensionality for the shown example?

Approach: Learn Word Embedding Space

 An embedding space represents a finite number of words, defined in training
A word embedding is represented as a vector indicating its context
* The dimensionality of all word embeddings in an embedding space match

] :

In practice, the learned discriminating
features are hard to interpret

—

Embedding Matrix

* The embedding matrix converts an input word into a dense vector

Size of vocabulary

Berimbau Soap Fire Guitar ees

| = | 7]
| |
0

Target dimensionality

(e.g., 5) 0
0 0.01

One hot encoding dictates 2

the word embedding to use 0

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.

Embedding Matrix

* It converts an input word into a dense vector

Size of vocabulary

Berimbau Soap Fire Guitar ees

0
I - I E 0.23
| I | @

Target dimensionality

(e.g., 5) 0
0 0.01

A word’s embedding can efficiently be 2

extracted when we know the word’s index 0

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.

Popular Word Embeddings

* Bengio method
e Word2vec (skip-gram model)

e And more...

Popular Word Embeddings

* Bengio method

dea: Learn Word Embeddings That Help
Predict Viable Next Words

e.q.,

1. Background music from a

2. Many people danced around the

3. I practiced for many years to learn how to play the

Bengio et al. A Neural Probabilistic Language Model. JMLR 2003.

Task: Predict Next Word
Given Previous Ones

e.q.,

1. Background music from a

2. Many people danced around the

3. I practiced for many years to learn how to play the

Task: Predict Next Word
Given Previous Ones

e.g., a vocabulary size of 17,000
was used in experiments

What is the dimensionality of the
output layer?

i-th output = P(w; = i | context)

C(Wr—n+

(oo
Table .. ~.. Matrix C o
look_up ------------------------- e .
inC parameter

index for w;_, 41 index for w;_» index for w;_

Bengio et al. A Neural Probabilistic Language Model. JMLR 2003.

i-th output = P(w; = i | context)

. A
Architecture ot
(eeo o0 000)
/ 7 } A
4 ’ ' \
’ / most| computation here \

Word embeddings:

Embedding matrix:

shared parameters
across words

index for w;_, 41 index for w;_» index for w;_

Bengio et al. A Neural Probabilistic Language Model. JMLR 2003.

i-th output = P(w; = i | context)

Architecture softmax

[X 000)

most| computation here \

e.g., a vocabulary size of 17,000
was used with embedding sizes of
30, 60, and 100 in experiments

Assume a 30-d word embedding
- what are the dimensions of the
embedding matrix C?

30x 17,000 (i.e., 510,000 weights)

shared parameters
across words

index for w;_,11 index for w;_» index for w;_

Bengio et al. A Neural Probabilistic Language Model. JMLR 2003.

i-th output = P(w; = i | context)

Architecture softmax

@XXO [X 000)

/ / most| computation here \

e.g., a vocabulary size of 17,000
was used with embedding sizes of
30, 60, and 100 in experiments

Assume a 30-d word embedding
- what are the dimensions of each
word embedding?

1x30 —
!OOk up shared parameters

across words
index for w;_, 41 index for w;_» index for w;_

Bengio et al. A Neural Probabilistic Language Model. JMLR 2003.

i-th output = P(w; = i | context)

Architecture e
A o0 siter s 000)
\\
, \
most| computation here \
\
\
\
- 1
§ tanh !
j - 0) "
! !
i /
Projection layer followed by a i " B
hidden layer with non-linearity i o
C(Wt—n+ C(Wt—z) C(Wt—l) -
(oo ... °) (e e ®)
Table ~. Matrix C R
!ooé('—up shared parameters
m across words
[
index for w;_,11 index for w;_» index for w;_

Bengio et al. A Neural Probabilistic Language Model. JMLR 2003.

i-th output = P(w; = i | context)

Training ot
— Y) stere 000)
\\
i \
most| computation here \
\
\
Use sliding window on input data; e.g., 3 words \
1
; tanh !
; 0) l'
! !
Background music from a berimbau offers a l /
. 1 /
beautiful escape... ‘]
i i
C(Wt—n+ C(Wt—z) C(Wt—l) e ’
(oo @) (e - - o)
Table ~., Matrix C q
look-up | Shaed parsanetar
Input: tried 1, 3, 5, and 8 input words in C TS Sod
and used 2 datasets with ~1 million and i
index for w;_,11 index for w;_» index for w;_

~34 million words respectively
Bengio et al. A Neural Probabilistic Language Model. JMLR 2003.

i-th output = P(w; = i | context)

Training ot
e o0 itei @ 000)
\\
i \
most| computation here \

\

\
Use sliding window on input data; e.g., 3 words \|
tanh !
. 0) "

beautiful escape...

I
I
I
BACKGFOURGNAUSIENON & berimbau offersa
|
i
i

C(Wt—n+ C(Wt—z) C(Wt—l) e ’
(e o @) (e -..0)
Table ~. Matrix C 57
look-up ™ Gl paramotor
Input: tried 1, 3, 5, and 8 input words in C across words
and used 2 datasets with ~1 million and [
index for w;_,11 index for w;_» index for w;_

~34 million words respectively
Bengio et al. A Neural Probabilistic Language Model. JMLR 2003.

i-th output = P(w; = i | context)

Tralnlng softmax

@XXO [X 000)

/ / most| computation here \

Use sliding window on input data; e.g., 3 words

|
; tanh !
; . 0) "
! !
Background [USIGHIRGMIE berimball of fers a | :
beautiful escape... : 4
i ’
\ g
C(Wt_n+ C(Wt_l) o s
(......) (......)
Table . ed
look_up ------------------------- SssssssssssEEEEE *
. . s shared parameters
Input: tried 1, 3, 5, and 8 input words in C ACTOSS &mds
and used 2 datasets with ~1 million and
index for w;_,11 index for w;_» index for w;_

~34 million words respectively
Bengio et al. A Neural Probabilistic Language Model. JMLR 2003.

i-th output = P(w; = i | context)

Tralnlng softmax

@XXO [X 000)

/ / most| computation here \

Use sliding window on input data; e.g., 3 words

|
; tanh !
; . 0) "
! !
Background music GRIGIBERIMBAN Of fers o | :
beautiful escape... : 4
i ’
\ g
C(Wt_n+ C(Wt_l) o s
(......) (......)
Table . ed
look_up ------------------------- SssssssssssEEEEE *
. . s shared parameters
Input: tried 1, 3, 5, and 8 input words in C ACTOSS &mds
and used 2 datasets with ~1 million and
index for w;_,11 index for w;_» index for w;_

~34 million words respectively
Bengio et al. A Neural Probabilistic Language Model. JMLR 2003.

i-th output = P(w; = i | context)

Tra | N | N g Cost function:
minimize cross Softmax
.. o0 S 00)
entropy loss plus N
regularization (L2 most| computation here "%
weight decay) ‘\
\
1
tanh !
0) l'

C(Wt—n+ C(Wt—z) C(Wt—l) e ’
Word embedding iteratively updated (oo --0) .. @) (ee - 9)
Table ~., Matrix C q
look-up [Shediparsaueis
|nput: tried 1, 3, 5, and 8 input words in C across words
and used 2 datasets with ~1 million and B
index for w;_,11 index for w;_» index for w;_

~34 million words respectively
Bengio et al. A Neural Probabilistic Language Model. JMLR 2003.

Summary: Word Embeddings Are Learned that
Support Predicting Viable Next Words

e.q.,

1. Background music from a

2. Many people danced around the

3. I practiced for many years to learn how to play the

Popular Word Embeddings

e Word2vec (skip-gram model)

|dea: Learn Word Embeddings That Know
What Are Viable Surrounding Words

e.q.,

1. berimbau

2. berimbau

Mikolov et al. Efficient Estimation of Word Representations in Vector Space. arXiv 2013.

Task: Given Word, Predict
a Nearby Word

e.q.,

1. berimbau

2. berimbau

Task: Given Word, Predict —
a Nea rby \NO rd Softmax Classifier

Hidden Layer
Linear Neurons

Probability that the word at a

> randomly chosen, nearby
position is “abandon”

\ ‘ - -. .,7 @ . . uability"

» m———\
> -
£
X
X

Input Vector

0
0
0
0
0
0
ﬁ
0
0

0

10,000 \J s 7
positions o
300 neurons — .."“zone"

10,000
neurons

https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b

Architecture

Input Vector

0

10,000
positions

Hidden Layer
Linear Neurons

Embedding
matrix

300 neurons

Word
embeddings

Output Layer
Softmax Classifier

Probability that the word at a
- randomly chosen, nearby
position is “abandon”

... “ability”

— .. "able”

—= .."“zone”

10,000
neurons

https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b

Architecture Output Layer

Softmax Classifier

Hidden Layer
Linear Neurons

Probability that the word at a
randomly chosen, nearby
position is “abandon”

Input Vector

OIOIO

embedding matrix?

:)
e.g., a vocabulary size of 10,000 is g ... “ability”
used with embedding sizes of 300 0
0
0)
What are the dimensions of the 0 e
]
0
0

300 x 10,000 (i.e., 3,000,000 weights)

10,000
positions

300 neurons ... 'zone”

©

10,000
neurons

https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b

Architecture Output Layer

Softmax Classifier

Hidden Layer
Linear Neurons

Probability that the word at a
- randomly chosen, nearby
position is “abandon”

Input Vector

0
e.g., a vocabulary size of 10,000 is 3 ... “ability”
used with embedding sizes of 300 0
0
0
What are the dimensions of each 0 O
word embedding? [}
0
0
1x 300 r
0
10,000
positions

300 neurons —= .."“zone"

Word Py

embeddings nedrons
https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b

Architecture

Input Vector

0
0
0
. . 0
A shallower, simpler architecture 0
than the Bengio approach (i.e., :
lacks a non-linear hidden layer)!]
0
0
0
10,000
positions

Hidden Layer
Linear Neurons

>

)

300 neurons

BECEE

Output Layer
Softmax Classifier

Probability that the word at a
- randomly chosen, nearby
position is “abandon”

... “ability”

... “able”

— .."“zone”

10,000
neurons

https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b

Training

Training
Samples

Source Text

-quick brown |fox jumps over the lazy dog. = (the, quick)
(the, brown)

The brown |fox|jumps over the lazy dog. == (quick, the)
Sliding window run on input data to (quick, brown)
. (quick, fox)
sample neighbors of each target
word (e.g., using window size of 2) The quick-fox jumps|over the lazy dog. == (brown, the)

(brown, quick)
(brown, fox)
(brown, jumps)

The|quick brown-jumps over|the lazy dog. = (fox, quick)
(fox, brown)

(fox, jumps)

(fox, over)

https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b

Extra Tricks: More Efficient Representations

2. Reformulate problem to

1. Change output layer to hierarchical softmax oerform negative sampling
fat 3 i
fridge e Binary classification: predict for a
zebra 1 given word if another word is nearby
potato 3 > L * Positive examples: observed target
and 14 foday and neighboring words
in 3 \ * Negative examples: randomly
today 4 fridge ko pduds sampled other words
kangaroo 2
1o, ngam

https://www.cs.princeton.edu/courses/archive/spring20/cos598C/lectures/lec2-word-embeddings.pdf

Mikolov et al. Distributed Representations of Words and Phrases and their Compositionality. Neurips 2013.

Hyperparameters: What Works Well?

* Word embedding dimensionality?
* Dimensionality set between 100 and 1,000

e Context window size?
e ~10

Mikolov et al. Efficient Estimation of Word Representations in Vector Space. arXiv 2013.

Very Exciting/Surprising Finding

* Vector arithmetic with word embeddings can solves many analogies

(Full test list: http://download.tensorflow.org/data/questions-words.txt)

e Semantic relationships (meaning of words in a sentence):
* Italy + (Paris - France) = Rome

 Syntactic relationships (rules for words in a sentence)
* smallest + (big — small) = biggest
* think + (read — reading) = thinking
* mouse + (dollars — dollar) = mice

Mikolov et al. Efficient Estimation of Word Representations in Vector Space. arXiv 2013.

http://download.tensorflow.org/data/questions-words.txt

Summary: Word Embeddings Are Learned that
Support Predicting Viable Surrounding Words!

e.q.,

1. berimbau

2. berimbau

Popular Word Embeddings

e And more...

Variants for Learning Word Embeddings

» Capture global context rather than just local context of previous or
surrounding words; e.g.,

* GloVe for Global Vectors (Pennington et al., 2014)

e Capture that the same word can have different word vectors under
different contexts; e.g.,

* Elmo for embeddings from language models (Peters et al., arXiv 2018)

* Support multiple languages; e.g.,
* Fast-text (Bojanowski et al., 2016)

Popular Word Embeddings

Recap of Big Picture

e Convert words into compact vectors as input to neural networks; e.g., RNNs

one to one one to many many to one many to many many to many
f N f N tt 1
f f Pt Pt A

* Implementation detail: may need to learn extra tokens such as “UNK” and “EOQS” to
represent out of vocabulary words and signify end of the string respectively

* Also, can fine-tune word embedding matrices for different applications

https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/

Word Embedding Limitations/Challenges

* Distinguish antonyms from synonyms

 Antonyms are learned near each other in the embedding space since they are
commonly used in similar contexts: “l hate math” vs “I love math” or “Take a
right turn” vs “Take a left turn”

* Gender bias: Man is to Computer Programmer as Woman is to

Homemaker? Debiasing Word Embeddings

Tolga Bolukbasi', Kai-Wei Chang?, James Zou?, Venkatesh Saligrama'?, Adam Kalai’
IBoston University, 8 Saint Mary’s Street, Boston, MA
2Microsoft Research New England, 1 Memorial Drive, Cambridge, MA
tolgab@bu.edu, kw @kwchang.net, jamesyzou @ gmail.com, srv@bu.edu, adam.kalai @microsoft.com

Word Embedding Limitations/Challenges

* Distinguish antonyms from synonyms

 Antonyms are learned near each other in the embedding space since they are
commonly used in similar contexts: “l hate math” vs “I love math” or “Take a
right turn” vs “Take a left turn”

e Gender bias:

Extreme she

0

1. homemaker
2. nurse

3. receptionist
4. librarian

5.
6
7
8
9
1

socialite

. hairdresser
. hanny
. bookkeeper

stylist

Extreme he

2 PO =R Ox B g LB 1D =

maestro
skipper
protege
philosopher
captain
architect
financier
warrior
broadcaster

. housekeeper 10. magician

Gender stereotype she-he analogies

registered nurse-physician housewife-shopkeeper
interior designer-architect softball-baseball
feminism-conservatism cosmetics-pharmaceuticals
giggle-chuckle vocalist-guitarist petite-lanky

sassy-snappy diva-superstar charming-affable
volleyball-football cupcakes-pizzas lovely-brilliant

sewing-carpentry
nurse-surgeon
blond-burly

Gender appropriate she-he analogies
sister-brother mother-father
ovarian cancer-prostate cancer convent-monastery

queen-king
waitress-waiter

Bolukbasi et al. Neurips 2016.

Word Embedding Limitations/Challenges

* Distinguish antonyms from synonyms

 Antonyms are learned near each other in the embedding space since they are
commonly used in similar contexts: “l hate math” vs “I love math” or “Take a
right turn” vs “Take a left turn”

 Gender bias

* What other language biases do you think could be learned?

Bolukbasi et al. Neurips 2016.

Task: Machine Translation

DETECT LANGUAGE ENGLISH SPANISH FRENCH v & GERMAN ENGLISH SPANISH
He loved to eat X Er liebte es zu essen
\!, .‘D 15/ 5,000 ¥ '19

Pioneering Neural Network Approach

Input encoded i

Nto a

fixed-size vector

He loved to

eat

Predictions stop

, at <EOS> token
Er liebte zu essen

i =00 Decoder'
- ----?----9----? --------------

NULL Er liebte zu essen

Vector decoded
into a translation

Image source: https://smerity.com/articles/2016/google nmt_arch.html
seg2seq: Sutskever et al. Sequence to Sequence Learning with Neural Networks. Neurips 2014.

Pioneering Neural Network Approach

Encoded fixed-length vector must
summarize all information about the
input that is needed for translation

He loved to

eat

Er liebte zu essen

Image source: https://smerity.com/articles/2016/google nmt_arch.html
Sutskever et al. Sequence to Sequence Learning with Neural Networks. Neurips 2014.

Analysis of Two Models

- = Both = = Both

20 | | | | 20 ! ! ! | | | |
© | = Source text e | — Source text
15 e]| oo Reference text || 15L/4 ' - Reference text ||
__________________ T W

(larger scores
are better)

BLEU score
=

BLEU score
=
(@)

ot
|

0 ! ! ! i | | ! 0
0O 10 20 30 40 50 60 70 &0 0O 10 20 30 40 50 60 70 &0
Sentence length Sentence length

What performance trend is observed for inputs (source) and outputs
(reference) as the number of words in each sentence grows?

Cho et al. On the Properties of Neural Machine Translation: Encoder—Decoder Approaches. SSST 2014.

Analysis of Two Models

20 | > | ! | | | | 20 ! E ! | I | 1
Nni | — Source text | — Source text
i 15 fsfe e o R \\ """ Reference text || o 15 . ' - Reference text ||
8 |/ : \]|-- Both S - - Both
) : ; s AL &2
(larger scores S 10 E O A AR R A A i
are better)]]
M g M sl NN i
ol T ol 1 i
0O 10 20 30 40 50 60 70 &0 0O 10 20 30 40 50 60 70 &0
Sentence length Sentence length

Performance drops for longer sentences!

Cho et al. On the Properties of Neural Machine Translation: Encoder—Decoder Approaches. SSST 2014.

Problem: Performance Drops As Sentence
_ength Grows

Er liebte zu essen

Hypothesis: fixed-length vector lacks - F--- - ___ & ___ A _ - ,
ffici ' |l ' :
sufficient capacity to capture a E Softmax '

relevant information forlongsentences __ _&____&A____&____&____&__________ !

' Encoder (_ : : _ }>{ }>»{ > >) Decoder:!
e e e | I _ ____*____*____+ ______________ |

iEmbed . . .) () i NULL Er liebte zu essen

He loved to eat

Image source: https://smerity.com/articles/2016/google nmt_arch.html
Cho et al. On the Properties of Neural Machine Translation: Encoder—Decoder Approaches. SSST 2014.

|dea to Preserve Performance for Long
Sentences: Attention

Er liebte zu essen

Do not require encoder

o Softmax !
to summarize input

He loved to eat

Image source: https://smerity.com/articles/2016/google nmt_arch.html

|dea to Preserve Performance for Long
Sentences: Attention

Er liebte zu essen

Instead, have the encoder pass all input’s
hidden states to the decoder to decide
which to use for prediction at each time step

X

He loved to eat

Image source: https://smerity.com/articles/2016/google nmt_arch.html

|dea to Preserve Performance for Long
Sentences: Attention

Decoder decides which inputs are needed for prediction at each time step;
e.g., “hard attention” focuses on one input

Input Target

He loved to eat Er liebte zu essen

Note: while word order between the input and target align in this example, it can differ

https://deeplearning.cs.cmu.edu/F21/document/slides/lec18.attention.pdf

|dea to Preserve Performance for Long
Sentences: Attention

Decoder decides which inputs are needed for prediction at each time step;
e.g., “hard attention” focuses on one input

Input Target

He loved to eat Er liebte zu essen

Limitations: a target word relies on information about
one input word and “hard attention” is not differentiable

https://deeplearning.cs.cmu.edu/F21/document/slides/lec18.attention.pdf

|dea to Preserve Performance for Long
Sentences: Attention

Decoder decides which inputs are needed for prediction at each time step;
e.g., “soft attention” uses a weighted combination of the input

Input Target

He loved to eat Er liebte zu essen

] -

|dea to Preserve Performance for Long
Sentences: Attention

Decoder decides which inputs are needed for prediction at each time step;
e.g., “soft attention” uses a weighted combination of the input

Input Target

He loved to eat Er liebte zu essen

|_| t=1

|dea to Preserve Performance for Long
Sentences: Attention

Decoder decides which inputs are needed for prediction at each time step;
e.g., “soft attention” uses a weighted combination of the input

Input Target

He loved to eat Er liebte zu essen
t=1 t=3

|dea to Preserve Performance for Long
Sentences: Attention

Decoder decides which inputs are needed for prediction at each time step;
e.g., “soft attention” uses a weighted combination of the input

Input Target

He loved to eat Er liebte zu essen

—l r t=1 t=3 t=4

“Soft” Attention: Challenge

Decoder decides which inputs are needed for prediction at each time step;
e.g., “soft attention” uses a weighted combination of the input

Input Target

He loved to eat Er liebte zu essen

—l r t=1 t=3 t=4

How should weights be chosen for each input?

“Soft” Attention: Challenge

Decoder decides which inputs are needed for prediction at each time step;
e.g., “soft attention” uses a weighted combination of the input

Input Target

He loved to eat Er liebte zu essen

—l r t=1 t=3 t=4

Could collect manual annotations and then incorporate into the loss function that
predicted weights should match ground truth weights... but this approach is impractical

“Soft” Attention: Challenge

Decoder decides which inputs are needed for prediction at each time step;
e.g., “soft attention” uses a weighted combination of the input

Input Target

He loved to eat Er liebte zu essen

—l r t=1 t=3 t=4

Instead, have the model learn
how to weight each input!

Solution

3. At each decoder time step, a adetton

prediction is made based on the ..?.‘ e

weighted sum of the inputs | | |

multiplication multiplication multiplication

alignment
vector
m. S0 ax 50l ax

2. At each decoder time step,
attention weights are computed
that determine each input’s
relevance for the prediction

= YYIT OO0 0000 O0O0O

"' L

1. Encoder produces hidden 00— ‘ « 1 00
state for every input

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

Solution

3. At each decoder time step, a
prediction is made based on the
weighted sum of the inputs

2. At each decoder time step,
attention weights are computed
that determine each input’s
relevance for the prediction

Decoder

GRU

BiGRU

multiplication

alignment
vector

V5

concat

—

addition

0000 -

t

multiplication multiplication

multiplication

Encoder

Wl 1 Y I OO0 0000 O0O0O

L

00—

L

e ma

b

i

i 1

— 00

i

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

Measuring Each
Input’s Influence
on the Prediction

How many inputs
are in this example?

w QO /\\ ‘
concat
'—’ Attention layer
addition
0000 -
multiplication multiplicatiol multiplicatio multiplicatio
nnnnnn

A rn sssss

d
hidden state score
OO I O — O R O —r O

BiGRU

|

| | |

00—

w g QOO0 i OOOO i OOOO I OOOO

i

— 00

i i i

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

Measuring Each
Input’s Influence
on the Prediction

At each decoder time step, the
similarity between the
decoder’s hidden state and
each input’s hidden state is
computed to decide each
input’s score at the time step

concat

'—’ Attention layer

addition

0000
I I I I
multiplication multiplicatiol multiplicatio multiplicatio

'9"“0.007 QCQQT 0000“ QQQQT

soﬁmax

W I I I) o000 0000 0]00]0,

‘[LH — i) ‘!:h
BiGRU OO ‘_' i ‘_ N ‘— <—OO

Encoder I T I T I T ; T

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

Measuring Each
Input’s Influence
on the Prediction

At each decoder time step, the
similarity between the
decoder’s hidden state and
each input’s hidden state is
computed to decide each
input’s score at the time step

concat

'—’ Attention layer

addition

0000 -
I I I I
multiplication multiplicatiol multiplicatio multiplicatio

'9"“0.007 QOQCT 0000“ QQQQT

W I I I) o000 0000 @000

- = -
BiGRU OO ‘_‘ i ‘_ N ‘— 4_OO

Encoder I T I I I T ; T

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

Measuring Each
Input’s Influence
on the Prediction

At each decoder time step, the
similarity between the
decoder’s hidden state and
each input’s hidden state is
computed to decide each
input’s score at the time step

concat

'—’ Attention layer

addition

0000 -
I I I I
multiplication multiplicatiol multiplicatio multiplicatio

'9"“0.007 QOQCT 0000“ QQQQT

ftm
score
— @

W I I I) o000 0000 @000

I M
BiGRU O O > i > N > . O O

L — s

Encoder I T I I I T ; T

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

Measuring Each
Input’s Influence
on the Prediction

At each decoder time step, the
similarity between the
decoder’s hidden state and
each input’s hidden state is
computed to decide each
input’s score at the time step

concat

'—’ Attention layer

addition

0000 -
I | I I

multiplication multiplication multiplication multiplication

W I I I] o000 0000 @000

I N
Y : : ! A - 00

L — s

Encoder I T I t I T ; T

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

Measuring Each
Input’s Influence
on the Prediction

How to measure the similarity
between hidden states of the
decoder and input?

w @@—

concat

'—’ Attention layer

addition

0000 - -
I l I I

multiplication multiplicatiol multiplicatio multiplicatio

Wl 1 Y I OO0 0000 O0O0O

I N
Y : : ! A - 00

Encoder : T I T I T ; T

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

Similarity Measure for Hidden States of the
Decoder and Encoder

Attention

score(hg, sy)
O How relevantis
scalar | out source token k

2 Y fortargetstept?
Attention J P
‘funcnon‘

Encoder state Decoder state
for token k: sy at stept: h;

https://lena-voita.github.io/nlp _course/seq2seq_and_attention.html

Similarity Measure for Hidden States of the
Decoder and Encoder

* Many options (function should be differentiable)

Dot-product Bilinear Multi-Layer Perceptron
T " : =1
hi hi ‘ WZT § hy
X Sk X W Il X]o| Sk X tanh V\/1 X lol7
: S/\'
score(h,,sx) = hl s, score(h,, sx) = h!l Ws;, score(h, sx) = w, - tanh(Wy [h, sk])

https://lena-voita.github.io/nlp _course/seq2seq_and_attention.html

Similarity Measure for Hidden States of the
Decoder and Encoder

* Many options (function should be differentiable)

Dot-product Bilinear Multi-Layer Perceptron
T [01,]
ht W;r § ht
000 -
(eo00) X [W || X]o| Sk X tanh || Wq| X [
1|9k
score(h,,s;) = h! s, | score(h,,s;) = hI Ws, score(h, sx) = w, - tanh(Wy [h, sk])

What model parameters must be learned when using dot-product?

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Similarity Measure for Hidden States of the
Decoder and Encoder

* Many options (function should be differentiable)

Dot-product Bilinear Multi-Layer Perceptron
T T I o)1, |
hy hi WZT § hy
(000 9] X [g] 5, [eeoo) X [W || X]o| Sk X tanh || W4 | X |2
0[Sk
score(h,,s;) = h! s, [score(h,,s;) = hI Ws, score(h, sx) = w, - tanh(Wy [h, sk])

What model parameters must be learned when using bilinear?

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Similarity Measure for Hidden States of the
Decoder and Encoder

* Many options (function should be differentiable)

Dot-product Bilinear Multi-Layer Perceptron
hi hi wa
E5e9 x || s, ><>< S xtanhx‘
: S‘/\’
score(h,,s,) = hf s, score(h,,s;) = hI Ws, score(h, sx) = w, - tanh(Wy [h, sk])

What model parameters must be learned when using multi-layer perceptron?

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Similarity Measure for Hidden States of the
Decoder and Encoder

* Many options (function should be differentiable)

Dot-product Bilinear Multi-Layer Perceptron
T T I o)1, |
hy hi) Wér § hy
X (o] S X1 W Il X|o| Sk X tanh V\/1 X o

score(hy, sg) = hT s, score(hy, s) = hf'/\, score(hy, sx) tanht,é‘/\’])

(no parameters)

Model parameters that must be learned

https://lena-voita.github.io/nlp _course/seq2seq_and_attention.html

Measuring Each
Input’s Influence
on the Prediction

After computing the
similarity scores for each
input, then apply softmax so
all inputs’ weights sumto 1

=) 3
0000000

'—' Attention layer

addition

0000 - -

t
| | | |

multiplication multiplication multiplication multiplication

alignment
vector
ftrn.

decoder
hidden state

|

we 0000 VOO0 OGO00O 000
L - -

BIGRU OO—' ‘_ N ‘_ <_OO

A

L S—

Encoder : T I T l T ; T

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

Measuring Each
Input’s Influence
on the Prediction

We now have our
attention weights!

\ concat
'—’ Attention layer
addition
0000 -
multiplication multiplication multiplication multiplication
alignmen t
vector
¥ ftmax | softmax softmax softmax
decod i
hidden state score
eeeeeee
hidden state
‘I:‘—l]] ‘I:h
L1 [1
s Q@ — ~ ~
@0
| T T T
Encoder T t T T

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

Measuring Each
Input’s Influence
on the Prediction

Intuitively:
Input Target

He loved to eat Er liebte zu essen

] I

The model can weight each
input at each time step!

Solution

3. At each decoder time step, a
prediction is made based on the
weighted sum of the inputs

2. At each decoder time step,
attention weights are computed
that determine each input’s
relevance for the prediction

Decoder

GRU

BiGRU

multiplication

alignment
vector

V5

concat

—

addition

0000 -

t

multiplication multiplication

multiplication

Encoder

Wl 1 Y I OO0 0000 O0O0O

L

00—

L

e ma

b

i

i 1

— 00

i

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

gy ”\\;
I " f f
Word Prediction Lok o

Attention layer

We compute at time step t for all sciton
. context vector
n inputs a weighted sum: 1
I I I I
n multiplication multiplication multiplication multiplication
_ h e 0000 0000 Q000+ 0000
¢ = Ay il | -)
= 1 himds?;m score score score
QO — @ — @ — @

The influence of inputs are I I I I
amplified for large attention

weights and repressed otherwise wam Q000 0000 0000 0000

e s ub ua

BiGRU OO—> > > » > <_OO

— e — S

Encoder : I : T J T T I

A

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

Final prediction made not

- only using the input word and
. . the previous hidden state, but
WO rd P e d | Ct 10N now also the context vector
0000 - -
t
| | | |

multiplication multiplication

multiplication multiplication
alignment
vector <—I $| ‘—‘ <—|
4 A
softmax softmax softmax
I | I

softmax

A
decoder i
hidden state score score score score

| | | | |
= 0000 0000 0000 0000

hidden state
B N) i
[l

BiGRU OO—’ g g N 4 <_OO
“ 1 il =]

Encoder

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

Decoder Many options exist for how
to combine the input word,
previous hidden state, and

context vector

GRU

Word Prediction

Attention layer

addition

0000

t
| | | |

multiplication

multiplication multiplication multiplication

alignment
vector <—I “I ‘—‘ <—|
3 4 3
softmax softmax softmax
I | I

A softmax
I

decoder
hidden state score score score score

| | | | |

Wl 1 Y I OO0 0000 O0O0O

S o e b

BiGRU OO_“ > > N <—OO
IT lr IT IT

Encoder

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

Decoder

GRU

Solution

Attention layer

What stays the same at adatton

each decoder time step? CC?.O ——

- input’s hidden state | | | |

multiplication multiplication multiplication multiplication

o 00007 0000 i QC.Q‘—‘ "‘.7
What changes at each e o —

decoder time step? 00 O
- decoder’s hidden state

- and so attention weights

score

and context vector Whigons OSI:CI)_‘O Oi)liO O?I:D_‘O OSEID—IO
BiGRU OO—’_ ‘— ‘— ‘— . OO
Encoder “1 i) %]

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

Summary: Attention
(Computations at Each Decoder Step)

m
[Attention output c® =gV +aP%s, + - +als, = z THe
‘(weghted “Ts@wr(c context for decoder step t” =1
sum)
Decoder decides which Attentionweights a® = ,,,elXp(SCMe(ht’S"')? k=1.m
inputs are needed for 1 i=1 exp(scorelhy, s:)) "

prediction at each time “attention weight for source token k at decoder step t

step with “soft attention”,
which results in a weighted

‘ (softmax)

, , , Attention scores score(hs, si),k=1..m
combination of the input tr51c)
‘ “How relevantis source token k for target step t?”
Attention input S1» 525 1 Sm h¢

all encoder states one decoder state

https://lena-voita.github.io/nlp _course/seq2seq_and_attention.html

Summary: Attention
(Computations at Each Decoder Step)

All parts are differentiable
which means end-to-end
training is possible

—

—

m

Attention output cT'(t) = agt)s1 + agt)sz e s o a,(,f)sm = z a/(\,t)s,\,

(weighted “source context for decoder step t” 1

weighte

sum)
_ . exp(score(hy, sy
Attention weights /(,t) = — P(e Sk)) k=1..m
T\ L exp(score(hy, s;))

“attention weight for source token k at decoder step t”
(softmax)

Attention scores score(hs, s), k=1..m
‘ “How relevantis source token k for target step t?”
Attention input Sy S5y sy Sy h¢

all encoder states one decoder state

https://lena-voita.github.io/nlp _course/seq2seq_and_attention.html

Popular Choices for Encoding Input

e Bi-directional RNN

e Stacked RNNs

Popular Choices for Encoding Input

e Bi-directional RNN

Many Options for How to Encode Input

* Two RNNs where input is fed forward and backward respectively and
then the hidden states (typically) are concatenated into a hidden state

$ 22 2

@<—A'< A’ < N A'<—
@ A A A ‘L’AA’@

& . @

What are advantages of a bi-directional RNN compared to a single RNN?

https://towardsdatascience.com/understanding-bidirectional-rnn-in-pytorch-5bd25a5dd66

Many Options for How to Encode Input

* Two RNNs where input is fed forward and backward respectively and
then the hidden states (typically) are concatenated into a hidden state

?
A%A A'<A A%A

()

Can use information from the past and future to make predictions: e.g., can resolve
for "Teddy is a ...?” if Teddy refers to a “bear” or former US President Roosevelt

https://towardsdatascience.com/understanding-bidirectional-rnn-in-pytorch-5bd25a5dd66

Many Options for How to Encode Input

* Two RNNs where input is fed forward and backward respectively and
then the hidden states (typically) are concatenated into a hidden state

*

(sh)e—

Al

<

*

Al

<

A

(x)

What are disadvantages of a bi-directional RNN compared to a single RNN?

A

wl-®

‘L’AA’@

https://towardsdatascience.com/understanding-bidirectional-rnn-in-pytorch-5bd25a5dd66

Many Options for How to Encode Input

* Two RNNs where input is fed forward and backward respectively and
then the hidden states (typically) are concatenated into a hidden state

*

<

*

A'

<

¥

L

A

()

Entire sequence must be observed to make a prediction (e.g., unsuitable for text prediction)

A

Al

<

A

A 5

‘EAH@

3

®)

https://towardsdatascience.com/understanding-bidirectional-rnn-in-pytorch-5bd25a5dd66

Bahdanau’s - ee T\ .
Neural Machine ~ 1\

0000000
—l— - | . ‘—‘ Attention layer
ansiation
0000

t
| | | |

multiplication multiplication multiplication multiplication

'”‘00007 .QQQW CQQQT Q.QOT

00 .® —e |—e [— S
| | \ |
— we 0000 OO000 0000 0000
o . i —1:h mn —I%
Bi-directional RNN = sevv QO — - - - . ‘ : . 0@
Ehocdie “1 “1 B i

~——

Bahdanau et al. Neural Machine Translation by Jointly Learning to Align and Translate. ICLR 2015
https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

Popular Choices for Encoding Input

e Stacked RNNs

_.uong’s Neural
Machine Translation

00 -
| | t | |
multiplicatios multiplication multiplication multiplication
e @@ ‘—l @]@) '—\ @& - @0 '—\
% - 8 -8 o
e OTO OTO OTO OIO
LSTM 2 O O — r—y O O
2 layers : ; : o
LSTM 1 Oo — B O O
I | i |

~——

Luong et al. Effective Approaches to Attention-based Neural Machine Translation. EMNLP 2015
https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3#df28

Popular Choices for Encoding Input

e Bi-directional RNN

e Stacked RNNs

03307
] Y .
Google’s Neural S
. . s @@ 'y °0 00
Machine Translation e | x| =1 2 =
00 .9 |—0 |—e —e@
I | | |
s O]O\ O]O\ OIO\ OIO
sms @@ —
1] 1] r) r
00 00 00 00
! 1 r r
| | : |
00 00 00 00
8 layers with 1rst ‘ \ ! \ I \ '
e @@ — ,
layer bi- directional | 1 1 / i } ;
?O ?O> qo> qo
o @@)
Y 4 Y Y
sm: @@ —
Wu et al. Google’s Neural Machine Translation System: Bridging - OO_,_Eh i o i
the Gap between Human and Machine Translation. arXiv 2016. . —, . - -

https://towardsdatascience.com/attn-illustrated-attention- 5ec4ad276ee3#df28

Popular Choices for Encoding Input

Analysis of Attention Models

30 T T T ! !
25
20 |-+

(larger scores 15 |

BLEU score

are better) - 5 F ; sy ;
10 H{ — RNNsearch-50 |................ s R §.\'i;-.~..,.§ i
----- RNNsearch-30 | g A S g
54 - - RNNenc-50 [S— T S 1
- - - RNNenc-30 -'\5'*.,_ .
0 | | i ; |
0 10 20 30 40 50 60

Sentence length

What performance trend is observed as the number of words in the input sentence grows?

Bahdanau et al. Neural Machine Translation by Jointly Learning to Align and Translate. ICLR 2015

Analysis of Attention Models

30 T T T ! !
25
20 ..“ .,' ; .

(larger scores 15 [

BLEU score

are better) - 5 F ; sy ;
10 H{ — RNNsearch-50 |................ s R s §.\'i;-.«..,.§ i
----- RNNsearch-30 | g L SRS,
5H - - RNNenc-50 [e o e s o s s 1
RNNenc-30 1
0 | i i ; i
0 10 20 30 40 50 60

Sentence length

Performance no longer drops for longer sentences!

Bahdanau et al. Neural Machine Translation by Jointly Learning to Align and Translate. ICLR 2015

Visualizing Attention

Input sentence Input sentence
=
S c v
o & 8 o 0 N o o)) Q > A
o 2 S 56 8§ v c oD o c c = = c =
Q () w _ 3 L o] cC
C Occ SO SO _ 3o [_C:_‘C°>u_at:>~E QG-]
68 0 s WWdad v Sdqao V FSCE2EES EER .V
i
accord Cela
sur va
la changer
Q zone T, mo.n
O) O avenir
C économique c
O) Q avec
E’ européenne -'E ma
Q O .
A a A famille
+ été - "
- 3% >
o signé o ,
+ = a
- en - g
A it
O aoQt ® "
1992 homme
<end> <end>

Values are 0 to 1, with whiter pixels indicating larger attention weights

Bahdanau et al. Neural Machine Translation by Jointly Learning to Align and Translate. ICLR 2015

Visualizing Attention

Input sentence Input sentence
)
P g
w Ee] 7] A 0]
o 3 e P S o g g v = -é
[« I o = 0 o ¥ c o8 O < n _ 5 £ C o c
C Occ SO SO _ 3o v = 85 56 v © = o
68 0 s WWdad v Sdqao V FSCE2EES EER .V
L'
accord Cela
sur va
la changer
Q zone T, mo.n
O : O avenir
CIC) economique 6 S/ EE
-lE européenne -'E ma
Q O .
A a A famille
+ été - "
> 5 g S
o signé o ,
+— = a
> en) git
5 i
O aolt O '
1992 homme
<end> <end>

What insights can we glean from these examples?

Bahdanau et al. Neural Machine Translation by Jointly Learning to Align and Translate. ICLR 2015

Visualizing Attention

Input sentence Input sentence
b
P g
@ o a7 A (]
3 S w ,2 3o T > ¢ > 2
[« I o = 0 o ¥ c o8 O < n _ 5 £ C o c
C Occ SO SO _ 3o v '_E=_(c°>‘*-‘t'>‘g QG-]
68 0 s WWdad v Sdqao V FSCE2EES EER .V
accord Cela
sur va
la changer
Q zone T, mo.n
O) o avenir
C économique c
O) O avec
-IE européenne -'E ma
Q O .
A , 8'1 A famille
+— ete - "
- W -
o signé o ,
+ = a
- en - g
A it
o aoQt O "
1992 homme
<end> <end>

While a linear alignment between input and output sentences is common,

there are exceptions (e.g., order of adjectives and nouns can differ)
Bahdanau et al. Neural Machine Translation by Jointly Learning to Align and Translate. ICLR 2015

Visualizing Attention

Input sentence Input sentence
=
5 c v
£ o £ I A)
o Q © ° |2 A o o > A
3] o € ®© P 5 N = c C = °
[« B O = 0 o % S o8 O w_ g = = C o c
C O EC c 5 U - o . 3o %’ '_E:_C>s4-14;'>sE o © -z o
68 0 s WWdad v Sdqao F2GCE2TESL £ER .V
!..l
accord Cela
sur va
la changer
Q zone T, mqn
I~ : O avenir
C économique c
O) O avec
£ européenne = ma
Q o .
A , ? A famille
+— ete - "
> 2)
o signé o ,
+ = a
S5 en -
@) @)

aolt
1992

<end>

Output words are often informed by more than one input word;

e.g., “man” indicates translation of “the” to I’ instead of le, |la, or les
Bahdanau et al. Neural Machine Translation by Jointly Learning to Align and Translate. ICLR 2015

Visualizing Attention

Input sentence Input sentence
)
P g
Q o += A Q
o @ A
] g 8 8 o w 8 g’\ g -8 n g £ < é‘ c -8
coc 22508 2 aco e 2 O [== 8 D8 > £ v 6 2]
68 0 s WWdad v Sdqao V FSCE2EES EER .V
L'
accord Cela
sur va
la changer
Q zone T, mqn
O : O avenir
CIC) economique 6 S/ EE
?E européenne ?E ma
Q O .
A , ? A famille
+— ete - "
> 5 g S
o signé o ,
+— = a
> en -
@) @)

aolt
1992

<end>

It naturally handles different input and output lengths

(e.g., 1 extra output word for both examples)
Bahdanau et al. Neural Machine Translation by Jointly Learning to Align and Translate. ICLR 2015

Today’s Topics

* Transformer overview

* Self-attention

* Multi-head attention

* Common transformer ingredients

* Pioneering transformer: machine translation

Goal: Model Sequential Data (Recall RNN)

O-

<
—

W

Q Unfold >

Q

U

=

Each hidden state is a function of the previous hidden state

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

Problem: RNNs Use Sequential Computation

0

O

.
CT>:> Um‘old>

X

o <

Seemingly hard for RNNs to carry information through hidden
states across many time steps and train/testing is slow

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

l[dea: Model Sequential Data Without Recurrence

Unfold

X

Replace sequential hidden states for capturing knowledge of other inputs with a new
representation of each input that shows its relationship to all other inputs (i.e., self-attention)

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

Transformer Key |dea: Self-Attention

New representation of each token in a sequence showing its relationship to all tokens; e.g.,

I arrived at the :)ank after crossing the river

‘E‘[_‘@

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

Transformer Key |dea: Self-Attention

New representation of each token in a sequence showing its relationship to all tokens; e.g.,

I arrived at the bank after crossing the river

[

Arrow thickness is indicative of attention weight

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

Transformer Key |dea: Self-Attention

New representation of each token in a sequence showing its relationship to all tokens; e.g.,

I arrived at the bank after crossing the river

A large attention score means the other word will
strongly inform the new representation of the word

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

Transformer Intuition

What does bank mean in this sentence?

I arrived at the bank after crossing the ...

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

Transformer Intuition

What does bank mean in this sentence?
- the new representation of the word disambiguates the meaning by identifying other
relevant words (e.g., high attention score with “river”

I arrived at the bank after crossing the river

VS

I arrived at the bank after crossing the street

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

Transformer vs RNN (Intuition)

I arrived at the bank after crossing the ..

What does bank mean in this sentence? Meaning depends on other input words

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

Transformer vs RNN (Intuition)

I arrived at the bank after crossing the ...

What does bank mean in this sentence? Meaning depends on other input words

I've no idea: let's wait T don't need to wait - I
until I read the end < see all words at once

RNNs Transformer

O(N) steps to process a Constant number of steps
sentence with length N to process any sentence

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

Transformer: A Suggested Definition

“Any architecture designed to process a connected
set of units—such as the tokens in a sequence or
the pixels in an image—where the only interaction

between units is through self-attention.”

http://peterbloem.nl/blog/transformers

Today’s Topics

e Self-attention

Self-Attention: Outcome

New representation of each token in a sequence showing its relationship to all tokens

The cat sat on the

https://towardsdatascience.com/self-attention-5b95ea164f61

Self-Attention: OQutcome

New representation of each token in a sequence showing its relationship to all tokens; e.g.,

il

Rashonda accepted a job in deep learning because she loves the topic

1 o

Self-Attention: OQutcome

New representation of each token in a sequence showing its relationship to all tokens; e.g.,

1

Rashonda accepted a job in deep learning because she loves the topic
A\

Self-Attention: Outcome

New representation of each token in a sequence showing its relationship to all tokens; e.g.,

Rashonda accepted a job in deep learning because she loves the topic
-

And so on for remaining words...

Self-Attention: Disambiguates Word Meanings

New representation of each token in a sequence showing its relationship to all tokens; e.g.,

Rashonda accepted a job in deep learning because she loves the topic

A better representation of “she” would
encode information about “Rashonda”

Self-Attention: Disambiguates Word Meanings

New representation of each token in a sequence showing its relationship to all tokens; e.g.,

I arrived at the bank across the river

A better representation of “bank” would
encode information about “river”

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

Self-Attention vs General Attention

Self-attention General attention
Relates tokens from the same source Relates tokens from different sources

Input Target
I arrived at the bank after crossing theriver He loved to eat Er liebte zu essen

CHPETFS 7

Computing Self-Attention: Similar Approach
to How We Compute General Attention

Key difference 2: attention

Attention output ® = ¢ (£) (&) Z . .
P CT g Sy T By o T “x ° A score multiplied with a value
| “source context for decoder step t” derived from the input
(weighted
sum)

@ _ exp(score(hy,s;))

_ k=1..
. i exp(score(hy, s;)) .

Attention weights

f

“attention weight for source token k at decoder step t”
(softmax)

Attention scores score(hg, si),k=1..m

| “How relevant is source token k for target step t?”

Attention input 51,52,y S h
Key difference 1: input for self-attention

https://lena-voita.github.io/nlp _course/seq2seq_and_attention.html

Computing Self-Attention: Example

New representation of each input token to
reflect each one’s relationship to all tokens

Input tokens 1]of1]o o[2]o]2 IEEE

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Computing Self-Attention: Example

1 I 1

- How many inputs are in this example?
- What is each one’s dimensionality?

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Computing Self-Attention: Example

Three vectors are derived for
each input by multiplying
with three weight matrices
(learned during training):
guery, key, and value

1

I

Key 1:

0

1

1

Value 1:

1

2

3

Key 2:

4

4

Value 2:

2

Key 3:

2

3

1

Value 3:

2

3

20a

Computing Self-Attention: Example

e.g., key weights

0,

’

-

S

-

-

-

-

1

I

1lofl1|0|X [0,
[1,
[0,
[1,

0, 1]
1, 0]
1, 0]
1, 0]

XIo,
[1’
[0,
[1,

PR PO
- u N 0w

1]
0]
0]
0]

x[o, o, 1]
[1, 1, @]
[0, 1, 0]
[1, 1, o]

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Computing Self-Attention: Example

1 I 1

e.g., value weights

0, 2, 0]
(O30
(1, 0, 3]
(1, 1, O]
t ! t t ! !
A I ﬁ

1]of1]o|x [0, 2, 0] ol2[o2]|x[0, 2, 0] 1l1]1]1|x[0, 2,

[0, 3, 0] [0, 3, 0]) 5l

[1, 0, 3] [1, 0, 3] [1, 0o,

[1, 1, 0] [1, 1, O] [1, 1,

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

N (1) S =N

Computing Self-Attention: Example

1 I 1

e.g., query weights

[0]
(1, 0, ©
0, 0, 1
(OS]]
f t t t f
T I *
| | |
Query 1: - Query 2: - Query 3: -

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Computing Self-Attention: Example

1 I 1

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:
O]) || 1123 4 14| 0 2|81|0 2]13]1 2|6 |3
t f t t t f
How many weight matrices I I]
are learned in this example? e 11 ° - 210 - LN l‘ :
Query 1: - Query 2: - Query 3: -

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Computing Self-Attention: Example

Why do we learn the three
weight matrices?

For each input, 2 of the
derived vectors are used to
compute attention weights
(query and key) and the 3" is
information passed on for the
new representation (value)

1

I

Key 1: Value 1:
o111 1123
t t
7§
1 110
Query 1: [1]5]=]

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 2: Value 2:
4 14| 0 2|(8]|0
t |
02|02
Query 2: [Z]2]=]

Key 3:

Value 3:

2|13]1 2

3

t

!

ﬁ

11111

Query 3: [2]4]5]

Computing Self-Attention: Example

1

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:
0|11 11213 4 (4|0 2(8|0 2|13]1 2 (6|3
t f t f t !
1 1
We now will examine how to Tl Te 5T T T

find the new representation 1
for the first input. Query 1: [H]8]Z] :

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Computing Self-Attention: Example

1

Attention score: dot product
of query with all keys to
identify relevant tokens; e.g.,

1(0(2] X0 =7 Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:
1123 4141|0 28|60 21311 2|6 | 3
1 1 1 1 f r r
1 1 f
1/0|1|0 02|02] |] A

|
Query 1-

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Computing Self-Attention: Example

1

Attention score: dot product
of query with all keys to
identify relevant tokens; e.g.,

1/0/2| X |a =7 Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:
4 t i i t i
0 1 I f
1 o1 0 0|2|0] 2 1 1 1 1

|
Query 1-

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Computing Self-Attention: Example

1

Attention score: dot product
of query with all keys to
identify relevant tokens; e.g.,

1102 X |2 =7 Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:
3 t 1 1 E¢E r
L [

ﬁ

1/1]0(1]0 012]|0]|2 11111

|
Query 1-

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Computing Self-Attention: Example

1

Why dot product? Indicates

similarity of two vectors
- Match =1 (i.e., cos(0))
- Opposites = -1 (i.e., cos(180))

Na \‘*.x~:(‘(ﬁﬁ,\/‘.\‘x;\ Key 1. Value 1: Key 2. Value 2: Key 3. Value 3:
> Y 4

T i 1 1 r
—_— - ‘x ~—. size / magnitude of L) 1
the vector x
1{of1]o0 0|l2]|0]2 1{1]1[1
https://towardsdatascience.com/ l

self-attention-5b95ea164f61 Query 1-

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Computing Self-Attention: Example

1

Can also use similarity
measures other than
the dot product

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:
t t t]

y \ I 5

1/0|1|0 0|2|0]| 2 1111 1

|
Query 1-

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Computing Self-Attention: Example

1

Attention weights: softmax ‘ ‘
scores for all inputs to quantify
each token’s relevance; e.g.,

= softmax([2, 4, 4])

Keﬁlt Value 1: Key 2: Value 2: Key 3: Value 3:
[0.0, 0.5, 0.5]) — EE 2Je]o m EIE
¥ I £

To which inpUt(S) iSinpUtl 1]0|1]o0 o|l2|o0]2 B EEERE
most related? 1

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Computing Self-Attention: Example

Compute new representation

of input token that reflects

entire input:

X Values

0.0 ‘ 105 ‘ 0.5
| | r
Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:
t f t t ! f
/Y I 5
11]0|1]0 02|02 181 IRIE1
Query 1: []e]=]

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Computing Self-Attention: Example

Compute new representation
of input token that reflects

entire input ooloojoo) [1o]ao]oo] [ro30]10]-

1. x Values G o .
2.Sum all T ! !
Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:
o|1 1 1123 4 |14 |0 2|81|0 2 F3 11 2|6 |3
t t t 1 t |
))
11]0|1]0 0(2|0]| 2 L] 1
Query 1: [E]e]2]

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Computing Self-Attention: Example

s

0oloofoofy |J10la0joofy Juo]30]10}-

amplify 0.0 .| 0.5 0.5
input representations (values) ! I I
that we want to pay attention Key1l: Value1: Key2: Value2: Key3: Value3:
to and repress the rest o 11 1]2]3 alalo 2[s]o 231 263
t f t f t t
1 1
|
Query 1: [E]o]2]

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Computing Self-Attention: Example

Repeat the same process for Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:
. . . O]) || 1123 414|0 2|81|0 2|31 2|6 |3
each remaining input token ' \ T T T T
%
1/0(1|0 0|]2|0])]2 111111

QU TEEEL_ quey 2 EEE .

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Computing Self-Attention: Example

1. Compute attention weights Keﬁl: Valué 1: Ke_ 2: Valué 2: Ke _3: Valué 3:
- Softmanx resulting 3 scores ﬂll 1 21 ? g ; 0 m 2 ; 3

from query x keys /Y 5

11]0(1]0 0|12]|0]|2 11111

To which input(s) is input 2 | |

most related?” Query 2:-

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Computing Self-Attention: Example

1. Compute attention weights
- Softmax resulting 3 scores
from query x keys

2. Compute weighted sum of
values using attention scores

0.0 - 1.0 0.0
| | r
Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:
t f t 1 ! !
f f
1/0(1|0 02|02 L | A
Query 2: [Z]2]2]

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Computing Self-Attention: Example

Repeat the same process for Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:
. . . O]) || 1123 414|0 2|81|0 2|31 2|6 |3
each remaining input token ' \ T 1 T T
1/0(1|0 0|]2(0])]2 111111

| |
w Query 3: 2]2]3E]

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Computing Self-Attention: Example

1. Compute attention weights Keﬁl: Valué 1: Ke_ 2: Valué 2: Ke _3: Valué 3:
- Softmanx resulting 3 scores ﬂll 1 21 ? g ; 0 m 2 ; 3
from query x keys Y I 5

11]0(1]0 012]|0]|2 11111

To which input(s) is input 3 | ‘

most related? Query 3-

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Computing Self-Attention: Example

1. Compute attention weights
- Softmax resulting 3 scores
from query x keys

2. Compute weighted sum of
values using attention scores

0.0 .| 0.9 0.1
o | r
Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:
t f t 1 ! !
f f
1/0(1|0 02|02 L | A
Query 2: [Z]2]2]

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Computing Self-Attention: Example

-

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:
(o] P 1123 414|0 2|81|0 2|31 2|6 |3
t t t t t f
[[[
110|1]0 02|02 |
Query 1: [E]e]2] Query 2: [2]2]Z] Query 3: [Z[E]5]

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Efficient Computation for Self-Attention

Step 1
X wa Q
Each row is an _
input token: E X = E Each row is a query

X = E Each row is a key
X Al V

X = E Each row is a value

http://jalammar.github.io/illustrated-transformer/

Efficient Computation for Self-Attention

Step 1 Step 2
we Q
X = Q T

softmax()
y K

Implementation detail: scaling

= down the size helps preserve
gradients needed for training; k is
dimensionality of the key vector

http://jalammar.github.io/illustrated-transformer/

Self-Attention vs RNN: Propagates Information
About Other Inputs Without Recurrent Units

A H,

: 4% % X,

The cat sat on the

http://www.wildml.com/2015/09/recurrent-neural-

. . . https://towardsdatascience.com/self-attention-5b95eal64f61
networks-tutorial-part-1-introduction-to-rnns/

Today’s Topics

e Multi-head attention

Multi-head Attention

X
I x p—
I I:—III II II I
* Goal: enable each token to relate Wk
to other tokens in multiple ways W
Wk Kl
X 3 K,
K3
* Key idea: multiple self-attention % = FE' 1
mechanisms, each with their own |
key, value and query matrices "
1
2

V

X | V,
% I:E'LI'LI'LV'I
I —
i

https://sebastianraschka.com/pdf/lecture-notes/stat453ss21/L19 seq2seq_rnn-transformers__slides.pdf

Multi-head Attention

1) Create query, key, and value

vectors for all attentions heads
\

3) Condense all representations
into a single representation by

2) Compute new concatenating z-s and
input representations multiplying by a weight matrix

A A

1

1 [1

http://jalammar.github.io/illustrated-transformer/

Trained Multi-head Attention Examples

5 § Attention: | Input - Input
Figure shows two columns of attention weights =
for the first two attention heads The_ The_
o] animal_ animal_
- Darker values signify larger attention scores didn_ didn_
t_ t_
What does “it” focus on most in the first cross._ cross._
attention head? the_ the_
. . . street street
- The animal (e.g., represents what is “it”) 2 -
because_ because_
it_ it_
. . was_ was_
What does “it” focus on most in the second o -
attention head? iire tire
- tired (e.g., represents how “it” feels) d_ d

http://jalammar.github.io/illustrated-transformer/

Trained Multi-head Attention Examples

Figure shows five columns of attention weights
for five attention heads

- Darker values signify larger attention scores

Attention weights may be hard to interpret

Layer:| 5 §| Attention:

Input - Input

H BTl
The_

animal_
didn_

KL

Cross_
the_
street_
because_
it_

was_
too_

A
v

tire —

d

The_
animal_
didn_

Cross._
the_

street_
because

was_
too_
tire

http://jalammar.github.io/illustrated-transformer/

Today’s Topics

* Common transformer ingredients

Typical Transformer Block

input transformer block output

nn

(i

Architectures often chain together multiple
transformer blocks, like that shown here

http://peterbloem.nl/blog/transformers

Typical Transformer Block

input transformer block output

(i

nn

1
Layer normalization and residual connections

improve training (i.e., faster and better results)
http://peterbloem.nl/blog/transformers

Typical Transformer Block

input transformer block output

nn

(i

l J
1
Feedforward layer per input

http://peterbloem.nl/blog/transformers

Typical Transformer Block

input transformer block output

nn

(i

\ J
|

Where are non-linearities introduced in this block?

http://peterbloem.nl/blog/transformers

Typical Transformer Block

input

self
| attention

nnf

\

transformer block

MLP

MLP

MLP

MLP

output

J

|

Non-linearities introduced in the softmax of self-
attention, activation functions in MLP, and layer norms

http://peterbloem.nl/blog/transformers

Challenge: Transtformers Lack Sensitivity
to the Order of the Input Tokens

input transformer block output

MLP

| | seff T " e

.: attention i
m e

\)

1
Input observed as a set and so shuffling the order of input
tokens results in the same outputs except in the same
shuffled order (i.e. self-attention is permutation equivariant) http://peterbloem.nl/blog/transformers

Solution: Add Position as Input to Transformer

EMBEDDING
WITH TIME |
SIGNAL NN HEEN

POSITIONAL ’ l
ENCODING

EMBEDDINGS

INPUT

* Options:
* Position embeddings: created by training with sequences of every length during training

* Position encodings: a function mapping positions to vectors that the network learns to
interpret (enables generalization to lengths not observed during training)

http://jalammar.github.io/illustrated-transformer/

Today’s Topics

* Pioneering transformer: machine translation

Attention Is All You Need

Ashish Vaswani* Noam Shazeer* Niki Parmar™
Google Brain Google Brain Google Research

avaswani@google.com noam@google.com nikip@google.com

Jakob Uszkoreit™
Google Research
usz@google.com

Llion Jones* Aidan N. Gomez* T Fukasz Kaiser*
Google Research University of Toronto Google Brain
llion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Ilia Polosukhin*
illia.polosukhin@gmail.com

Target Application: Machine Translation

l am a student

&

(N)

ENCODERS » DECODERS

\))

1S etudiant

https://jalammar.github.io/illustrated-transformer/

Architecture

* Key Ingredient
e Self-Attention in the encoder and decoder

e Other ingredients
e Positional encoding
* Layer normalization
* Residual connections
* Feed forward layers

* Nx = 6 chained blocks (encoder & decoder)

) S—

~>{ Add & Norm |

Feed
Forward

Qutput
Probabilities

t

| Softmax |}

| Linear |

| Add & Norm Je=~

Feed
Forward

Multi-Head
Attention

2 2)

A

Nx B (Add & Norm)

Positional
Encoding

 S—

Multi-Head
Attention

—tr

Q)

Embedding

!

Inputs

L Add & Norm Je=

Masked
Multi-Head
Attention

, W

Output
Embedding

T

Outputs
(shifted right)

r
| Add & Norm J—~

Q)

Positional
Encoding

Vaswani et al. Attention Is All You Need. Neurips 2017.

Architecture

The decoder performs multi-head

attention on the encoder output

r

N
~>{ Add & Norm |

Feed
Forward

Qutput

Probabilities
)

| Softmax |

| Linear |}

A

-
[Add & Norm |}~
Feed

| Add & Norm Je—~

Multi-Head
Attention

2))

Nix & Norm
~—>| Add & Norm] R
Multi-Head Multi-Head
Attention Attention
R J U —)
Positional D & Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Vaswani et al. Attention Is All You Need. Neurips 2017.

