
CS 6355: Structured Prediction

Predicting Structures: 
Conditional Models and Local Classifiers
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Outline

• Sequence models

• Hidden Markov models

– Inference with HMM
– Learning

• Conditional Models and Local Classifiers

• Global models
– Conditional Random Fields

– Structured Perceptron for sequences
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Today’s Agenda

• Conditional models for predicting sequences

• Maximum Entropy Markov Models
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HMM redux

• The independence assumption

𝑃 𝑥!, 𝑥", ⋯ , 𝑥#, 𝑦!, 𝑦", ⋯ , 𝑦# = 𝑃 𝑦! '
$%!
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𝑃 𝑦$'! 𝑦$ '
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#

𝑃 𝑥$ 𝑦$
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• Training via maximum likelihood
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We are optimizing joint likelihood of the input and the output for training
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%

𝑃(𝐱%, 𝐲% ∣ 𝜋, 𝐴, 𝐵)

We are optimizing joint likelihood of the input and the output for training

At prediction time, we only care about the probability of output given the input:  
𝑃(𝑦!, 𝑦", ⋯ , 𝑦# ∣ 𝑥!, 𝑥", ⋯ , 𝑥#)

Why not directly optimize this conditional likelihood instead?
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Probability of 
input given the 
prediction!



Modeling next-state directly

• Instead of modeling the joint distribution 𝑃(𝐱, 𝐲), 
focus on 𝑃(𝐲 ∣ 𝐱) only 
– Which is what we care about eventually anyway

(At least in this context)

• For sequences, different formulations
– Maximum Entropy Markov Model [McCallum, et al 2000]

(other names: discriminative/conditional Markov model, projection-based Markov model…)
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• Generative models 
– learn P(x, y)
– Characterize how the data is generated (both inputs and outputs)
– Eg: Naïve Bayes, Hidden Markov Model

• Discriminative models 
– learn P(y | x)
– Directly characterizes the decision boundary only
– Eg: Logistic Regression, Conditional models (several names)

Generative vs Discriminative models

11



• Generative models 
– learn P(x, y)
– Characterize how the data is generated (both inputs and outputs)
– Eg: Naïve Bayes, Hidden Markov Model

• Discriminative models 
– learn P(y | x)
– Directly characterizes the decision boundary only
– Eg: Logistic Regression, Conditional models (several names)

Generative vs Discriminative models

A generative model tries to characterize 
the distribution of the inputs, a 
discriminative model doesn’t care

12



• Generative models 
– learn P(x, y)
– Characterize how the data is generated (both inputs and outputs)
– Eg: Naïve Bayes, Hidden Markov Model

• Discriminative models 
– learn P(y | x)
– Directly characterizes the decision boundary only
– Eg: Logistic Regression, Conditional models (several names)

Generative vs Discriminative models

A generative model tries to characterize 
the distribution of the inputs, a 
discriminative model doesn’t care

13



• Generative models 
– learn P(x, y)
– Characterize how the data is generated (both inputs and outputs)
– Eg: Naïve Bayes, Hidden Markov Model

• Discriminative models 
– learn P(y | x)
– Directly characterizes the decision boundary only
– Eg: Logistic Regression, Conditional models (several names)

Generative vs Discriminative models

A generative model tries to characterize 
the distribution of the inputs, a 
discriminative model doesn’t care

14



• Generative models 
– learn P(x, y)
– Characterize how the data is generated (both inputs and outputs)
– Eg: Naïve Bayes, Hidden Markov Model

• Discriminative models 
– learn P(y | x)
– Directly characterizes the decision boundary only
– Eg: Logistic Regression, Conditional models (several names)

Generative vs Discriminative models

A generative model tries to characterize 
the distribution of the inputs, a 
discriminative model doesn’t care

15



HMM redux

• The independence assumption

𝑃 𝑥!, 𝑥", ⋯ , 𝑥#, 𝑦!, 𝑦", ⋯ , 𝑦# = 𝑃 𝑦! '
$%!

#&!

𝑃 𝑦$'! 𝑦$ '
$%!

#

𝑃 𝑥$ 𝑦$

• Training via maximum likelihood
max
!,#,$

𝑃 𝐷 ∣ 𝜋, 𝐴, 𝐵 = max
!,#,$

,
%

𝑃(𝐱%, 𝐲% ∣ 𝜋, 𝐴, 𝐵)

We are optimizing joint likelihood of the input and the output for training

16

Probability of 
input given the 
prediction!

At prediction time, we only care about the probability of output given the 
input. Why not directly optimize this conditional likelihood instead?



Let’s revisit the independence assumptions

yt-1 yt

xt
HMM
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𝑃 𝑦% 𝑦%&', anything else = 𝑃 𝑦% 𝑦%&'

𝑃 𝑥% 𝑦%, anything else = 𝑃 𝑥% 𝑦%



Another independence assumption

yt-1 yt
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HMM Conditional

model
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Another independence assumption

This assumption lets us write the conditional 
probability of the entire output sequence 𝐲 as
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We need to learn this function



Modeling 𝑃(𝑦! ∣ 𝑦!"#, 𝑥!)

This is a multiclass classifier whose input is the pair 
𝑦=>?, 𝑥=, and the label is the state 𝑦=

Different approaches possible
1. Train a maximum entropy classifier (i.e., a multiclass 

logistic regression classifier)

2. Or, ignore the fact that we are predicting a probability, 
we only care about maximizing some score. Train any 
multiclass classifier, using say the perceptron algorithm
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In any case, we can use any features from 𝑦$&! and 𝑥$. This was not possible with HMMs.



Today’s Agenda

• Conditional models for predicting sequences

• Maximum Entropy Markov Models
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The next-state model

This assumption lets us write the conditional 
probability of the output as
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We need to learn this function
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Modeling 𝑃(𝑦! ∣ 𝑦!"#, 𝑥!)

Different approaches possible
1. Train a maximum entropy classifier (i.e., a multiclass logistic 

regression classifier)

2. Or, ignore the fact that we are predicting a probability, we only 
care about maximizing some score. Train any multiclass 
classifier, using say the perceptron algorithm

For both cases:
– Use rich features that depend on input and previous state
– We can increase the dependency to arbitrary neighboring xi’s

• Eg. Neighboring words influence this words POS tag
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Maximum Entropy Markov Model

Determiner Noun Verb Noun

The Fed raises interest rates

Nounstart

Goal: Compute P(y | x)

The prediction task: Using the entire input and the current label, predict the next label



Maximum Entropy Markov Model
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Determiner Noun Verb Noun

The Fed raises interest rates

Nounstart

Caps

-es
Previous

word

Goal: Compute P(y | x)

To model the probability, first, we need to define 
features for the current classification problem



Maximum Entropy Markov Model
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Determiner Noun Verb Noun

The Fed raises interest rates

Nounstart

Y
N

start

The
Caps

-es?
Previous

word

Goal: Compute P(y | x)

𝜙(𝐱, 0, start)



Maximum Entropy Markov Model
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Compare to HMM: Only depends on the word and the previous tag

Determiner Noun Verb Noun

The Fed raises interest rates

Nounstart

Questions?

Y
N

start

The
Y
N

Determiner

Fed
N
Y

Noun

raises
N
N

Verb

interest
N
N

Noun

rates
Caps

-es?
Previous

word

Goal: Compute P(y | x)

Á(x, 2, y1, y2) Á(x, 3, y2, y3) Á(x, 4, y3, y4)

Can get very 
creative here

𝜙(𝐱, 0, start) 𝜙(𝐱, 1, Det. )
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Using MEMM

• Training
– Next-state predictor locally as maximum likelihood

• Similar to any maximum entropy classifier

• Prediction/decoding
– Modify the Viterbi algorithm for the new independence 

assumptions

37

HMM
Conditional 
Markov model



Generalization: Any multiclass classifier 

• Viterbi decoding: we only need a score for each decision
– So far, probabilistic classifiers

• In general, use any learning algorithm to build get a score 
for the label yi given yi-1 and x
– Multiclass versions of perceptron, SVM
– Just like MEMM, these allow arbitrary features to be defined

Exercise: Viterbi needs to be re-defined to work with sum of scores 
rather than the product of probabilities
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Comparison to HMM

What we gain
1. Rich feature representation for inputs

• Helps generalize better by thinking about properties of the input 
tokens rather than the entire tokens

• Eg: If a word ends with –es, it might be a present tense verb 
(such as raises). Could be a feature; HMM cannot capture this

2. Discriminative predictor
• Model P(y | x) rather than P(y, x)
• Joint vs conditional 

39
Questions?



Outline

• Conditional models for predicting sequences

• Log-linear models for multiclass classification

• Maximum Entropy Markov Models
– The Label Bias Problem
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The next-state model for sequences

This assumption lets us write the conditional probability of the output as

yt-1 yt

xt

yt-1 yt

xt
HMM Conditional

model
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We need to train local multiclass classifiers that predicts the next 
state given the previous state and the input



…local classifiers → Label bias problem

Let’s look at the independence assumption

42

The robot wheels are round

Eg: Part-of-speech tagging the sentence

N

V

V

N

N

0.8

0.2

1

1
D

1

A

R

1

1

Suppose these are the only state transitions allowed

Option 1: P(D | The) ×
P(N | D, robot) ×
P(N | N, wheels) ×
P(V | N, are) ×
P(A | V, round)

Option 2: P(D | The) ×
P(N | D, robot) ×
P(V | N, wheels) ×
P(N | V, are) ×
P( R| N, round)

“Next-state” classifiers 
are locally normalized

Example based on [Wallach 2002]
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…local classifiers → Label bias problem
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The robot wheels are round

Suppose these are the only state transitions allowed
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Option 1: P(D | The) ×
P(N | D, robot) ×
P(N | N, wheels) ×
P(V | N, are) ×
P(A | V, round)

Option 2: P(D | The) ×
P(N | D, robot) ×
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P(N | V, are) ×
P( R| N, round)

The robot wheels Fred round

P(V | N, Fred) ×

P(N | V, Fred) ×

The path scores are the same

Even if the word Fred is never observed as a verb in the data, it will be predicted as one 

The input Fred does not influence the output at all



Label Bias

• States with a single outgoing transition effectively ignore 
their input
– States with lower-entropy next states are less influenced by 

observations

• Why?
– Because each the next-state classifiers are locally normalized
– If a state has fewer next states, each of those will get a higher 

probability mass
• …and hence preferred

• Side note: Surprisingly doesn’t affect some tasks
– Eg: part-of-speech tagging
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Summary: Local models for Sequences

• Conditional models

• Use rich features in the mode

• Possibly suffer from label bias problem

(Other “local” models may have their own version of 
the label bias problem too.)
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Outline

• Sequence models

• Hidden Markov models

– Inference with HMM
– Learning

• Conditional Models and Local Classifiers

• Global models
– Conditional Random Fields

– Structured Perceptron for sequences
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