
Machine Learning

The Perceptron Algorithm
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Some slides based on lectures from Dan Roth, Avrim Blum and others



Outline

• The Perceptron Algorithm

• Variants of Perceptron

• Perceptron Mistake Bound
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Where are we?

• The Perceptron Algorithm

• Variants of Perceptron

• Perceptron Mistake Bound
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Recall: Linear Classifiers

Inputs are 𝑑 dimensional vectors, denoted by 𝐱
Output is a label 𝑦 ∈ {−1, 1}

Linear Threshold Units classify an example 𝐱 using 
parameters 𝐰 (a 𝑑 dimensional vector) and 𝑏 (a real number)
according the following classification rule

Output = sign(𝐰!𝐱 + 𝑏) = sign(∑"𝑤"𝑥" + 𝑏)

𝐰!𝐱 + 𝑏 ≥ 0 ⇒ 𝑦 = +1
𝐰!𝐱 + 𝑏 < 0 ⇒ 𝑦 = −1

4𝑏 is called the bias term
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The geometry of a linear classifier
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sgn(b +w1 x1 + w2x2)

In higher dimensions,
a linear classifier 
represents a hyperplane
that separates the space 
into two half-spaces
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The Perceptron
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The Perceptron algorithm

• Rosenblatt 1958
– (Though there were some hints of a similar idea earlier, eg: 

Agmon 1954)

• The goal is to find a separating hyperplane
– For separable data, guaranteed to find one

• An online algorithm
– Processes one example at a time

• Several variants exist
– We will see these briefly at towards the end
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The Perceptron algorithm

Input: A sequence of training examples 𝐱+, 𝑦+ , 𝐱,, 𝑦, , ⋯
where all 𝐱" ∈ ℜ-, 𝑦" ∈ {−1, 1}

1. Initialize 𝐰. = 0 ∈ ℜ-

2. For each training example 𝐱", 𝑦" : 
1. Predict y/ = sgn(𝐰01𝐱")
2. If  y/ ≠ 𝑦":
• Update 𝐰02+ ← 𝐰0 + 𝑟(𝑦"𝐱")

3. Return final weight vector
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Remember:
Prediction = sgn(wTx)

There is typically a bias term 
also (wTx + b), but the bias 
may be treated as a 
constant feature and folded 
into w
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Remember:
Prediction = sgn(wTx)

There is typically a bias term 
also (wTx + b), but the bias 
may be treated as a 
constant feature and folded 
into w

Footnote: For some algorithms it is mathematically easier to represent False as -1, 
and at other times, as 0. For the Perceptron algorithm, treat -1 as false and +1 as true.
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Mistake on positive: 𝐰)*! ← 𝐰) + 𝑟𝐱+
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r is the learning rate, a small positive 
number less than 1 

Update only on error. A mistake-driven 
algorithm

This is the simplest version. We will see 
more robust versions shortly

Mistake can be written as y+𝐰)
,𝐱+ ≤ 0
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Intuition behind the update

Suppose we have made a mistake on a positive example
That is, 𝑦 = +1 and 𝐰!

"𝐱 ≤ 0

Call the new weight vector 𝐰!#$ = 𝐰! + 𝐱 (say r = 1)

The new dot product is 𝐰%#$
" 𝐱 = 𝐰! + 𝐱 "𝐱 = 𝐰!

"𝐱 + 𝐱𝐓𝐱 ≥ 𝐰𝐭
𝐓𝐱

For a positive example, the Perceptron update will increase the score 
assigned to the same input

Similar reasoning for negative examples
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Mistake on negative: 𝐰)*! ← 𝐰) − 𝑟𝐱+



Geometry of the perceptron update
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Geometry of the perceptron update
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Where are we?

• The Perceptron Algorithm

• Variants of Perceptron

• Perceptron Mistake Bound
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Practical use of the Perceptron algorithm

1. Using the Perceptron algorithm with a finite dataset

2. Voting and Averaging

3. Margin Perceptron
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1. The “standard” algorithm

Given a training set 𝐷 = 𝐱( , 𝑦( where 𝐱( ∈ ℜ), 𝑦( ∈ −1, 1

1. Initialize 𝐰 = 𝟎 ∈ ℜ)

2. For epoch in 1⋯𝑇:
1. Shuffle the data
2. For each training example 𝐱( , 𝑦( ∈ 𝐷:
• If 𝑦(𝐰*𝐱( ≤ 0, then:

– update 𝐰 ← 𝐰+ 𝑟𝑦(𝐱(
3. Return 𝐰

Prediction on a new example with features 𝐱: sgn 𝐰*𝐱
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T is a hyper-parameter to the algorithm

Another way of writing that 
there is an error



2. Voting and Averaging
• So far: We return the final weight vector

• Voted perceptron
– Remember every weight vector in your sequence of updates.

– At final prediction time, each weight vector gets to vote on the label. The 
number of votes it gets is the number of iterations it survived before being 
updated

– Comes with strong theoretical guarantees about generalization, 
impractical because of storage issues

• Averaged perceptron
– Instead of using all weight vectors, use the average weight vector (i.e

longer surviving weight vectors get more say)

– More practical alternative and widely used 
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Averaged Perceptron

Given a training set 𝐷 = 𝐱( , 𝑦( where 𝐱( ∈ ℜ), 𝑦( ∈ −1, 1

1. Initialize 𝐰 = 𝟎 ∈ ℜ) and 𝐚 = 𝟎 ∈ ℜ)

2. For epoch in 1⋯𝑇:
1. Shuffle the data
2. For each training example 𝐱( , 𝑦( ∈ 𝐷:
• If 𝑦(𝐰*𝐱( ≤ 0, then:

– update 𝐰 ← 𝐰+ 𝑟𝑦(𝐱(
• 𝐚 ← 𝒂 +𝐰
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This is the simplest version of 
the averaged perceptron

There are some easy 
programming tricks to make 
sure that a is also updated 
only when there is an error 
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This is the simplest version of 
the averaged perceptron

There are some easy 
programming tricks to make 
sure that a is also updated 
only when there is an error 

If you want to use the 
Perceptron algorithm, use 
averaging



3. Margin Perceptron

• Perceptron makes updates only when the prediction is 
incorrect

𝑦"𝐰1𝐱" ≤ 0

• What if the prediction is close to being incorrect? That is, Pick 
a small positive 𝜂 and update when 

𝑦"𝐰1𝐱" ≤ 𝜂

• Can generalize better, but need to choose 𝜂
Exercise: Why is the margin perceptron a good idea? 
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The Perceptron
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The hype
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The New Yorker, December 6, 1958 P. 44

The New York Times, July 8 1958



The hype
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The New Yorker, December 6, 1958 P. 44

The New York Times, July 8 1958 The IBM 704 computer



What you need to know

• The Perceptron algorithm

• The geometry of the update

• What can it represent

• Variants of the Perceptron algorithm

44


