The Perceptron Algorithm

Machine Learning
THE

U UNIVERSITY
OF UTAH

Some slides based on lectures from Dan Roth, Avrim Blum and others

Outline

 The Perceptron Algorithm
* Variants of Perceptron

e Perceptron Mistake Bound

Where are we?

 The Perceptron Algorithm
* Variants of Perceptron

* Perceptron Mistake Bound

Recall: Linear Classifiers

Inputs are d dimensional vectors, denoted by x
Outputisalabely € {—1,1}

Linear Threshold Units classify an example x using
parameters w (a d dimensional vector) and b (a real number)
according the following classification rule

Output = sign(w'x + b) = sign(X; w;x; + b)

wix+bhb>0>y= +1
wix+bhb<0=>y=-1

b is called the bias term

Recall: Linear Classifiers

Inputs are d dimensional vectors, denoted by x
Outputisalabely € {—1,1}

Linear Threshold Units classify an example x using
parameters w (a d dimensional vector) and b (a real number)
according the following classification rule

sgn

%

Wy _—w v= b

D000 600060 6a

The geometry of a linear classifier

sen(b +w, X, + W-X
gn(1M 2%)) We only care about the

b +Wy X; + WyX,=0 sign, not the magnitude

4 ++3,
+ ++

[wy w,]

X1

_ — In higher dimensions,
- - a linear classifier
e represents a hyperplane
- that separates the space
into two half-spaces

The Perceptron

REPORT NO., 85.),60-1

THE PERCEPTRON
A PERCEIVING AND RECOGNIZING AUTOMATON

(PROJECT PARA)
January, 1957

Prepared by: 35m.A W

Frank Rosenblatt,
Project Engineer

Psyckological Review
Vol. 65, No. 6, 1958

THE PERCEPTRON: A PROBABILISTIC MODEL FOR
INFORMATION STORAGE AND ORGANIZATION
IN THE BRAIN?!

F. ROSENBLATT

Cornell Aeronautical Laboratory

The Perceptron algorithm

e Rosenblatt 1958

— (Though there were some hints of a similar idea earlier, eg:
Agmon 1954)

The goal is to find a separating hyperplane
— For separable data, guaranteed to find one

 Anonline algorithm
— Processes one example at a time

e Several variants exist
— We will see these briefly at towards the end

The Perceptron algorithm

Input: A sequence of training examples (X1, y1), (X2, ¥2), ***
where all x; € R%,y; € {—1,1}

1. Initialize wy = 0 € R
2. For each training example (x;, y;):
1. Predicty’ = sgn(w; x;)
2. If y' +y;:
* Update w1 < W, + 1 (¥;X;)
3. Return final weight vector

The Perceptron algorithm

Input: A sequence of training examples (X1, y1), (X2, ¥2), ***

where allx; € RY, y; € {—1,1}

1. Initialize wy = 0 € R
2. For each training example (x;, y;):
1. Predicty’ = sgn(w; x;)
2. If y' +y;:
* Update w1 < W, + 1 (¥;X;)
3. Return final weight vector

Remember:
Prediction = sgn(w'x)

There is typically a bias term

also (w'x + b), but the bias
may be treated as a

constant feature and folded

intow

10

The Perceptron algorithm

Input: A sequence of training examples (X1, y1), (X2, ¥2), -
where all x; € R%,y; € {—1,1}

Remember:
Prediction = sgn(w'x)

1. Initialize wy = 0 € R

.. There is typically a bias term
2. For each training example (x;, y;): yprealy

also (w'x + b), but the bias

1. Predict y’ — Sgn(Win) may be treated as a
, constant feature and folded
2. Ity #y;: into w

e Update wi 1 <« W + 1(y;X;)
3. Return final weight vector

Footnote: For some algorithms it is mathematically easier to represent False as -1,
and at other times, as 0. For the Perceptron algorithm, treat -1 as false and +1 as true. '

The Perceptron algorithm

Input: A sequence of training examples (X1, y1), (X2, ¥2), ***

where allx; € RY, y; € {—1,1}

Mistake on positive: Wy, 1 <« W; + 7X;
Mistake on negative: w;,; <« w; — rX;

1. Initialize wy = 0 € R //’7
2. For each training example (X;, y;): //

1. Predicty’ = sgn(thXi) /,

2. If y' #y;:

* Update|wyq & Wi +1(ViX;) |

3. Return final weight vector

12

The Perceptron algorithm

Input: A sequence of training examples (X1, y1), (X2, ¥2), ***

where allx; € RY, y; € {—1,1}

Mistake on positive: Wy, 1 <« W; + 7X;
Mistake on negative: w;,; <« w; — rX;

1. Initialize wy = 0 € R . _ —
ris the learning rate, a small positive
2. For each training example (X;, y;):| number less than 1

1. Predicty’ = sgn(w{x;)
2. |If y, F Vi
* Update wy, 1 « Wt HTEV;X;

-
-
-
-
-
-
Cd
-
-
-
-
-
-
-
-
-
-
-
-
-
-
f’
-

3. Return final weight vector

13

The Perceptron algorithm

Input: A sequence of training examples (X1, y1), (X2, ¥2), ***

where allx; € RY, y; € {—1,1}

Mistake on positive: Wy, 1 <« W; + 7X;
Mistake on negative: w;,; <« w; — rX;

1. Initialize wy = 0 € R . _ —
ris the learning rate, a small positive
2. For each training example (X;, y;):| number less than 1

1. Predicty’ = sgn(thXi)

Update only on error. A mistake-driven

2. If y’ 7 yi|-‘ -------------------- » algorithm

e Update wi 1 <« W + 1(y;X;)
3. Return final weight vector

14

The Perceptron algorithm

Input: A sequence of training examples (X1, y1), (X2, ¥2), -
where all x; € R%,y; € {—1,1}

Mistake on positive: Wy, 1 <« W; + 7X;
Mistake on negative: w;,; <« w; — rX;

1. Initialize wy = 0 € R . _ —
ris the learning rate, a small positive
2. For each training example (X;, y;):| number less than 1

1. Predicty’ =|sgn(w{x;)
~C Update only on error. A mistake-driven

2. |If y’ * yi|:" s algorithm

+ Update Wy, « Wr-I{9X;)
‘~‘i| Mistake can be written as intTXi <0 ‘

3. Return final weight vector

15

The Perceptron algorithm

Input: A sequence of training examples (X1, y1), (X2, ¥2), ***
where all x; € R%,y; € {—1,1}

Mistake on positive: Wy, 1 <« W; + 7X;
Mistake on negative: w;,; <« w; — rX;

1. Initialize wy = 0 € R . _ —
ris the learning rate, a small positive
2. For each training example (X;, y;):| number less than 1

1. Predicty’ = sgn(thXi)

2. |If y’ * Vi algorithm
e Update wi 1 <« W + 7(y;X;)

Update only on error. A mistake-driven

Mistake can be written as y;w/ x; < 0 ‘

3. Return final weight vector

This is the simplest version. We will see

more robust versions shortly »

Intuition behind the update

Mistake on positive: Wy, ;1 <« W; + 7X;
Mistake on negative: w;,; <« W; — rX;

Suppose we have made a mistake on a positive example
Thatis,y = +1landw/x <0

Call the new weight vector wy,1 = w; +X (sayr=1)

The new dot product is wiy1Xx = (W, + X)Tx = wix + xTx > w!x

For a positive example, the Perceptron update will increase the score
assigned to the same input

Similar reasoning for negative examples

17

Mistake on positive: Wy, ;1 « W; + 7X;
Mistake on negative: w;,; < W; — rX;

Geometry of the perceptron update

Predict

Woid

18

Mistake on positive: Wy, ;1 « W; + 7X;
Mistake on negative: w;,; < W; — rX;

Geometry of the perceptron update

Predict

Woid

(x, +1)

19

Mistake on positive: Wy, ;1 « W; + 7X;
Mistake on negative: w;,; < W; — rX;

Geometry of the perceptron update

Predict

Woid

(x, +1)

For a mistake on a positive
example

20

Mistake on positive: Wy, ;1 « W; + 7X;
Mistake on negative: w;,; < W; — rX;

Geometry of the perceptron update

Predict Update

W < W+ yX
Wold

(x, +1) (x, +1)

For a mistake on a positive
example

21

Mistake on positive: Wy, ;1 « W; + 7X;
Mistake on negative: w;,; < W; — rX;

Geometry of the perceptron update

Predict Update

Woid

(x, +1)

For a mistake on a positive
example

22

Mistake on positive: Wy, ;1 « W; + 7X;
Mistake on negative: w;,; < W; — rX;

Geometry of the perceptron update

Predict Update

Woid

(x, +1)

For a mistake on a positive
example

23

Mistake on positive: Wy, ;1 « W; + 7X;
Mistake on negative: w;,; < W; — rX;

Geometry of the perceptron update

Predict Update After

Woid

Wnew

(x, +1) (x, +1)

For a mistake on a positive
example

24

Geometry of the perceptron update

Predict

25

Geometry of the perceptron update

Predict

For a mistake on a negative
example

26

Geometry of the perceptron update

Predict

Update

For a mistake on a negative
example

27

Geometry of the perceptron update

Predict

Update

For a mistake on a negative
example

28

Geometry of the perceptron update

Predict

Update

For a mistake on a negative
example

29

Geometry of the perceptron update

Predict

Update

After

(Xr '1)

For a mistake on a negative
example

30

Where are we?

 The Perceptron Algorithm
e Variants of Perceptron

* Perceptron Mistake Bound

31

Practical use of the Perceptron algorithm

1. Using the Perceptron algorithm with a finite dataset

2. Voting and Averaging

3. Margin Perceptron

32

1. The “standard” algorithm

Given a training set D = {(x;,y;)} wherex; € R",y; € {—1,1}

1. Initialize w = 0 € R"
2. Forepochinl:---T:
1. Shuffle the data
2. For each training example (x;,y;) € D:
« Ify,wlx; <0, then:
— update w « w + 1y;X;
3. Returnw

Prediction on a new example with features x: sgn(w’x)

33

1. The “standard” algorithm

Given a training set D = {(x;,y;)} wherex; € R",y; € {—1,1}

1. Initializew = 0 € R"

2. Forepochin 1 T T is a hyper-parameter to the algorithm

1. Shuffle the data
2. For each training example (x;,y;) € D:

e Ify;wl'x; <0,then:
Vi L 4N Another way of writing that
— update w « w + ry;X; there is an error

3. Returnw

Prediction on a new example with features x: sgn(w’x)

34

2. Voting and Averaging

e So far: We return the final weight vector

* Voted perceptron
— Remember every weight vector in your sequence of updates.

— At final prediction time, each weight vector gets to vote on the label. The
number of votes it gets is the number of iterations it survived before being
updated

— Comes with strong theoretical guarantees about generalization,
impractical because of storage issues

35

2. Voting and Averaging

e So far: We return the final weight vector

* Voted perceptron
— Remember every weight vector in your sequence of updates.

— At final prediction time, each weight vector gets to vote on the label. The
number of votes it gets is the number of iterations it survived before being
updated

— Comes with strong theoretical guarantees about generalization,
impractical because of storage issues

* Averaged perceptron

— Instead of using all weight vectors, use the average weight vector (i.e
longer surviving weight vectors get more say)

— More practical alternative and widely used

36

Averaged Perceptron

Given a training set D = {(X;,y;)} where x; € R",y;, € {—1,1}

1. |Initializew =0 € R"landa = 0 € R"
2. Forepochinl:---T:
1. Shuffle the data
2. For each training example (x;,y;) € D:
e Ify;wlx; <0, then:
— update w « w + 1y;X;

cla<—a+w
3. Returna

Prediction on a new example with features x: sgn(a’x)

37

Averaged Perceptron

Given a training set D = {(X;,y;)} where x; € R",y;, € {—1,1}

1. Initializew = 0 € R"
2. Forepochinl:---T:
1. Shuffle the data

2. For each training example (x;,y;) € D:

anda =0 € R"

e Ify;wlx; <0, then:
— update w « w + 1y;X;

cla<—a+w
3. Returna

This is the simplest version of
the averaged perceptron

There are some easy
programming tricks to make
sure that a is also updated
only when there is an error

Prediction on a new example with features x: sgn(a’x)

38

Averaged Perceptron

Given a training set D = {(X;,y;)} where x; € R",y;, € {—1,1}

1. |Initializew =0 € R"landa = 0 € R"
2. Forepochinl:---T:
1. Shuffle the data
2. For each training example (x;,y;) € D:
e Ify;wlx; <0, then:
— update w « w + 1y;X;

cla<—a+w
3. Returna

This is the simplest version of
the averaged perceptron

There are some easy
programming tricks to make
sure that a is also updated
only when there is an error

If you want to use the
Perceptron algorithm, use
averaging

Prediction on a new example with features x: sgn(a’x)

39

3. Margin Perceptron

* Perceptron makes updates only when the prediction is
incorrect

inTXi < 0

 What if the prediction is close to being incorrect? That is, Pick

a small positive n and update when

T
YiW X; =17

* Can generalize better, but need to choose n
Exercise: Why is the margin perceptron a good idea?

40

The Perceptron

REPORT NO., 85.),60-1

THE PERCEPTRON
A PERCEIVING AND RECOGNIZING AUTOMATON

(PROJECT PARA)
January, 1957

Prepared by: 35m.A W

Frank Rosenblatt,
Project Engineer

Psyckological Review
Vol. 65, No. 6, 1958

THE PERCEPTRON: A PROBABILISTIC MODEL FOR
INFORMATION STORAGE AND ORGANIZATION
IN THE BRAIN?!

F. ROSENBLATT

Cornell Aeronautical Laboratory

41

The hype
NEW NAYY DEYIGE Hr\\'ING told you about the giant

- - digital computer known as [.B. M.
LEARNS BY DOING 704 and how it has been taught to play

' a fairly creditable game of chess, we’d
like to tell you about an even more
remarkable machine, the perceptron,
which, as its name implies, is capable
of what amounts to ornginal thought.

WASHINGTON, July. 7 (UPI) The first perceptron has yet to be built,
—The Navy revealed the em- -
bryo of an electronic computer

Psychologist Shows Embryo'
of Computer Designed to
Read and Grow Wiser

today that it expects will be The New Yorker Decem
ablo to walk, talk, see, write, , December 6, 1958 P. 44

reproduce itself and be con-
scious of its existence,

The embryo—the Weather
Bureau's $2,000,000 ‘704 com-
puter—learned to differentiate
between right and left after
fifty attempts in the Navy's
demonstration for newsmen.,

The service said it would use
this principle to build the first
of its Perceptron thinking ma-
chines that will be able to read
‘and write, It is expected to be

finished in about a year at a
ractk af 100 000

The New York Times, July 8 1958

The hype
NEW NAYY DEYIGE HAVII\'G told you about the giant

: » digital computer known as{lLB. M|
LEARNS BY DOING 704 |and how it has been taught to play

' a fairly creditable game of chess, we’d
like to tell you about an even more
remarkable machine, the perceptron,
which, as its name implies, is capable
of what amounts to original thought.

WASHINGTON, July. 7 (UPI) The first perceptron has yet to be built,
—The Navy revealed the em-

bryo of an electronic computer

Psychologist Shows Embryo'
of Computer Designed to
Read and Grow Wiser

today that it expects will be The New Yorker, December 6, 1958 P. 44
abla to walk, talk, see, write,
reproduce itself and be con-
scious of its existence,

The embryo—the Weather
Bureau's $2,000,000 ‘704" com-
puter—learned to differentiate
between right and left after
fifty aftempts in the Navy's
demonstration for newsmen,,

The service said it would use
this principle to build the first
of its Perceptron thinking ma-
chines that will be able to read
‘and write, It is expected to be

'finished in about & year at a
ract af 100 000

The New York Times, July 8 1958 The IBM 704 computer

What you need to know

The Perceptron algorithm

* The geometry of the update

What can it represent

Variants of the Perceptron algorithm

44

