
Machine Learning

The Perceptron Algorithm

1
Some slides based on lectures from Dan Roth, Avrim Blum and others

Outline

• The Perceptron Algorithm

• Variants of Perceptron

• Perceptron Mistake Bound

2

Where are we?

• The Perceptron Algorithm

• Variants of Perceptron

• Perceptron Mistake Bound

3

Recall: Linear Classifiers

Inputs are 𝑑 dimensional vectors, denoted by 𝐱
Output is a label 𝑦 ∈ {−1, 1}

Linear Threshold Units classify an example 𝐱 using
parameters 𝐰 (a 𝑑 dimensional vector) and 𝑏 (a real number)
according the following classification rule

Output = sign(𝐰!𝐱 + 𝑏) = sign(∑"𝑤"𝑥" + 𝑏)

𝐰!𝐱 + 𝑏 ≥ 0 ⇒ 𝑦 = +1
𝐰!𝐱 + 𝑏 < 0 ⇒ 𝑦 = −1

4𝑏 is called the bias term

Recall: Linear Classifiers

Inputs are 𝑑 dimensional vectors, denoted by 𝐱
Output is a label 𝑦 ∈ {−1, 1}

Linear Threshold Units classify an example 𝐱 using
parameters 𝐰 (a 𝑑 dimensional vector) and 𝑏 (a real number)
according the following classification rule

Output = sign(𝐰!𝐱 + 𝑏) = sign(∑"𝑤"𝑥" + 𝑏)

𝐰!𝐱 + 𝑏 ≥ 0 ⇒ 𝑦 = +1
𝐰!𝐱 + 𝑏 < 0 ⇒ 𝑦 = −1

5𝑏 is called the bias term

∑

sgn

𝑤! 𝑤" 𝑤# 𝑤$ 𝑤% 𝑤& 𝑤' 𝑤(
𝑥! 𝑥" 𝑥# 𝑥$ 𝑥% 𝑥& 𝑥' 𝑥(1

𝑏

The geometry of a linear classifier

6

sgn(b +w1 x1 + w2x2)

In higher dimensions,
a linear classifier
represents a hyperplane
that separates the space
into two half-spaces

x1

x2

+
+

+
+
+++

+

-
- -

-

-

- -
- -

-

-
-
-
--

-

-

-

b +w1 x1 + w2x2=0
We only care about the
sign, not the magnitude

[w1 w2]

The Perceptron

7

The Perceptron algorithm

• Rosenblatt 1958
– (Though there were some hints of a similar idea earlier, eg:

Agmon 1954)

• The goal is to find a separating hyperplane
– For separable data, guaranteed to find one

• An online algorithm
– Processes one example at a time

• Several variants exist
– We will see these briefly at towards the end

8

The Perceptron algorithm

Input: A sequence of training examples 𝐱+, 𝑦+ , 𝐱,, 𝑦, , ⋯
where all 𝐱" ∈ ℜ-, 𝑦" ∈ {−1, 1}

1. Initialize 𝐰. = 0 ∈ ℜ-

2. For each training example 𝐱", 𝑦" :
1. Predict y/ = sgn(𝐰01𝐱")
2. If y/ ≠ 𝑦":
• Update 𝐰02+ ← 𝐰0 + 𝑟(𝑦"𝐱")

3. Return final weight vector

9

The Perceptron algorithm

Input: A sequence of training examples 𝐱+, 𝑦+ , 𝐱,, 𝑦, , ⋯
where all 𝐱" ∈ ℜ-, 𝑦" ∈ {−1, 1}

1. Initialize 𝐰. = 0 ∈ ℜ-

2. For each training example 𝐱", 𝑦" :
1. Predict y/ = sgn(𝐰01𝐱")
2. If y/ ≠ 𝑦":
• Update 𝐰02+ ← 𝐰0 + 𝑟(𝑦"𝐱")

3. Return final weight vector

10

Remember:
Prediction = sgn(wTx)

There is typically a bias term
also (wTx + b), but the bias
may be treated as a
constant feature and folded
into w

The Perceptron algorithm

Input: A sequence of training examples 𝐱+, 𝑦+ , 𝐱,, 𝑦, , ⋯
where all 𝐱" ∈ ℜ-, 𝑦" ∈ {−1, 1}

1. Initialize 𝐰. = 0 ∈ ℜ-

2. For each training example 𝐱", 𝑦" :
1. Predict y/ = sgn(𝐰01𝐱")
2. If y/ ≠ 𝑦":
• Update 𝐰02+ ← 𝐰0 + 𝑟(𝑦"𝐱")

3. Return final weight vector

11

Remember:
Prediction = sgn(wTx)

There is typically a bias term
also (wTx + b), but the bias
may be treated as a
constant feature and folded
into w

Footnote: For some algorithms it is mathematically easier to represent False as -1,
and at other times, as 0. For the Perceptron algorithm, treat -1 as false and +1 as true.

The Perceptron algorithm

Input: A sequence of training examples 𝐱+, 𝑦+ , 𝐱,, 𝑦, , ⋯
where all 𝐱" ∈ ℜ-, 𝑦" ∈ {−1, 1}

1. Initialize 𝐰. = 0 ∈ ℜ-

2. For each training example 𝐱", 𝑦" :
1. Predict y/ = sgn(𝐰01𝐱")
2. If y/ ≠ 𝑦":
• Update 𝐰02+ ← 𝐰0 + 𝑟(𝑦"𝐱")

3. Return final weight vector

12

Mistake on positive: 𝐰)*! ← 𝐰) + 𝑟𝐱+
Mistake on negative: 𝐰)*! ← 𝐰) − 𝑟𝐱+

The Perceptron algorithm

Input: A sequence of training examples 𝐱+, 𝑦+ , 𝐱,, 𝑦, , ⋯
where all 𝐱" ∈ ℜ-, 𝑦" ∈ {−1, 1}

1. Initialize 𝐰. = 0 ∈ ℜ-

2. For each training example 𝐱", 𝑦" :
1. Predict y/ = sgn(𝐰01𝐱")
2. If y/ ≠ 𝑦":
• Update 𝐰02+ ← 𝐰0 + 𝑟(𝑦"𝐱")

3. Return final weight vector

13

r is the learning rate, a small positive
number less than 1

Mistake on positive: 𝐰)*! ← 𝐰) + 𝑟𝐱+
Mistake on negative: 𝐰)*! ← 𝐰) − 𝑟𝐱+

The Perceptron algorithm

Input: A sequence of training examples 𝐱+, 𝑦+ , 𝐱,, 𝑦, , ⋯
where all 𝐱" ∈ ℜ-, 𝑦" ∈ {−1, 1}

1. Initialize 𝐰. = 0 ∈ ℜ-

2. For each training example 𝐱", 𝑦" :
1. Predict y/ = sgn(𝐰01𝐱")
2. If y/ ≠ 𝑦":
• Update 𝐰02+ ← 𝐰0 + 𝑟(𝑦"𝐱")

3. Return final weight vector

14

r is the learning rate, a small positive
number less than 1

Update only on error. A mistake-driven
algorithm

Mistake on positive: 𝐰)*! ← 𝐰) + 𝑟𝐱+
Mistake on negative: 𝐰)*! ← 𝐰) − 𝑟𝐱+

The Perceptron algorithm

Input: A sequence of training examples 𝐱+, 𝑦+ , 𝐱,, 𝑦, , ⋯
where all 𝐱" ∈ ℜ-, 𝑦" ∈ {−1, 1}

1. Initialize 𝐰. = 0 ∈ ℜ-

2. For each training example 𝐱", 𝑦" :
1. Predict y/ = sgn(𝐰01𝐱")
2. If y/ ≠ 𝑦":
• Update 𝐰02+ ← 𝐰0 + 𝑟(𝑦"𝐱")

3. Return final weight vector

15

r is the learning rate, a small positive
number less than 1

Update only on error. A mistake-driven
algorithm

Mistake on positive: 𝐰)*! ← 𝐰) + 𝑟𝐱+
Mistake on negative: 𝐰)*! ← 𝐰) − 𝑟𝐱+

Mistake can be written as y+𝐰)
,𝐱+ ≤ 0

The Perceptron algorithm

Input: A sequence of training examples 𝐱+, 𝑦+ , 𝐱,, 𝑦, , ⋯
where all 𝐱" ∈ ℜ-, 𝑦" ∈ {−1, 1}

1. Initialize 𝐰. = 0 ∈ ℜ-

2. For each training example 𝐱", 𝑦" :
1. Predict y/ = sgn(𝐰01𝐱")
2. If y/ ≠ 𝑦":
• Update 𝐰02+ ← 𝐰0 + 𝑟(𝑦"𝐱")

3. Return final weight vector

16

r is the learning rate, a small positive
number less than 1

Update only on error. A mistake-driven
algorithm

This is the simplest version. We will see
more robust versions shortly

Mistake can be written as y+𝐰)
,𝐱+ ≤ 0

Mistake on positive: 𝐰)*! ← 𝐰) + 𝑟𝐱+
Mistake on negative: 𝐰)*! ← 𝐰) − 𝑟𝐱+

Intuition behind the update

Suppose we have made a mistake on a positive example
That is, 𝑦 = +1 and 𝐰!

"𝐱 ≤ 0

Call the new weight vector 𝐰!#$ = 𝐰! + 𝐱 (say r = 1)

The new dot product is 𝐰%#$
" 𝐱 = 𝐰! + 𝐱 "𝐱 = 𝐰!

"𝐱 + 𝐱𝐓𝐱 ≥ 𝐰𝐭
𝐓𝐱

For a positive example, the Perceptron update will increase the score
assigned to the same input

Similar reasoning for negative examples

17

Mistake on positive: 𝐰)*! ← 𝐰) + 𝑟𝐱+
Mistake on negative: 𝐰)*! ← 𝐰) − 𝑟𝐱+

Geometry of the perceptron update

18

wold

Predict

Mistake on positive: 𝐰)*! ← 𝐰) + 𝑟𝐱+
Mistake on negative: 𝐰)*! ← 𝐰) − 𝑟𝐱+

Geometry of the perceptron update

19

wold

(x, +1)

Predict

Mistake on positive: 𝐰)*! ← 𝐰) + 𝑟𝐱+
Mistake on negative: 𝐰)*! ← 𝐰) − 𝑟𝐱+

Geometry of the perceptron update

20

wold

(x, +1)

For a mistake on a positive
example

Predict

Mistake on positive: 𝐰)*! ← 𝐰) + 𝑟𝐱+
Mistake on negative: 𝐰)*! ← 𝐰) − 𝑟𝐱+

Geometry of the perceptron update

21

wold

(x, +1)

𝐰 ← 𝐰+ 𝑦𝐱

For a mistake on a positive
example

(x, +1)

Predict Update

Mistake on positive: 𝐰)*! ← 𝐰) + 𝑟𝐱+
Mistake on negative: 𝐰)*! ← 𝐰) − 𝑟𝐱+

Geometry of the perceptron update

22

wold

(x, +1)

𝐰 ← 𝐰+ 𝑦𝐱

For a mistake on a positive
example

(x, +1)

Predict Update

y x

Mistake on positive: 𝐰)*! ← 𝐰) + 𝑟𝐱+
Mistake on negative: 𝐰)*! ← 𝐰) − 𝑟𝐱+

Geometry of the perceptron update

23

wold

(x, +1)

𝐰 ← 𝐰+ 𝑦𝐱

For a mistake on a positive
example

(x, +1)

Predict Update

y x

Mistake on positive: 𝐰)*! ← 𝐰) + 𝑟𝐱+
Mistake on negative: 𝐰)*! ← 𝐰) − 𝑟𝐱+

Geometry of the perceptron update

24

wold

(x, +1) (x, +1)

wnew

𝐰 ← 𝐰+ 𝑦𝐱

For a mistake on a positive
example

(x, +1)

Predict Update After

y x

Mistake on positive: 𝐰)*! ← 𝐰) + 𝑟𝐱+
Mistake on negative: 𝐰)*! ← 𝐰) − 𝑟𝐱+

Geometry of the perceptron update

25

wold

Predict

Geometry of the perceptron update

26

wold
(x, -1)

Predict

For a mistake on a negative
example

Geometry of the perceptron update

27

wold
(x, -1)

𝐰 ← 𝐰+ 𝑦𝐱

(x, -1)

Predict Update

For a mistake on a negative
example

y x

Geometry of the perceptron update

28

wold
(x, -1)

𝐰 ← 𝐰+ 𝑦𝐱

(x, -1)

Predict Update

For a mistake on a negative
example

y x

Geometry of the perceptron update

29

wold
(x, -1)

𝐰 ← 𝐰+ 𝑦𝐱

(x, -1)

Predict Update

For a mistake on a negative
example

y x

Geometry of the perceptron update

30

wold
(x, -1) (x, -1)

wnew

𝐰 ← 𝐰+ 𝑦𝐱

(x, -1)

Predict Update After

For a mistake on a negative
example

y x

Where are we?

• The Perceptron Algorithm

• Variants of Perceptron

• Perceptron Mistake Bound

31

Practical use of the Perceptron algorithm

1. Using the Perceptron algorithm with a finite dataset

2. Voting and Averaging

3. Margin Perceptron

32

1. The “standard” algorithm

Given a training set 𝐷 = 𝐱(, 𝑦(where 𝐱(∈ ℜ), 𝑦(∈ −1, 1

1. Initialize 𝐰 = 𝟎 ∈ ℜ)

2. For epoch in 1⋯𝑇:
1. Shuffle the data
2. For each training example 𝐱(, 𝑦(∈ 𝐷:
• If 𝑦(𝐰*𝐱(≤ 0, then:

– update 𝐰 ← 𝐰+ 𝑟𝑦(𝐱(
3. Return 𝐰

Prediction on a new example with features 𝐱: sgn 𝐰*𝐱

33

1. The “standard” algorithm

Given a training set 𝐷 = 𝐱(, 𝑦(where 𝐱(∈ ℜ), 𝑦(∈ −1, 1

1. Initialize 𝐰 = 𝟎 ∈ ℜ)

2. For epoch in 1⋯𝑇:
1. Shuffle the data
2. For each training example 𝐱(, 𝑦(∈ 𝐷:
• If 𝑦(𝐰*𝐱(≤ 0, then:

– update 𝐰 ← 𝐰+ 𝑟𝑦(𝐱(
3. Return 𝐰

Prediction on a new example with features 𝐱: sgn 𝐰*𝐱

34

T is a hyper-parameter to the algorithm

Another way of writing that
there is an error

2. Voting and Averaging
• So far: We return the final weight vector

• Voted perceptron
– Remember every weight vector in your sequence of updates.

– At final prediction time, each weight vector gets to vote on the label. The
number of votes it gets is the number of iterations it survived before being
updated

– Comes with strong theoretical guarantees about generalization,
impractical because of storage issues

• Averaged perceptron
– Instead of using all weight vectors, use the average weight vector (i.e

longer surviving weight vectors get more say)

– More practical alternative and widely used

35

2. Voting and Averaging
• So far: We return the final weight vector

• Voted perceptron
– Remember every weight vector in your sequence of updates.

– At final prediction time, each weight vector gets to vote on the label. The
number of votes it gets is the number of iterations it survived before being
updated

– Comes with strong theoretical guarantees about generalization,
impractical because of storage issues

• Averaged perceptron
– Instead of using all weight vectors, use the average weight vector (i.e

longer surviving weight vectors get more say)

– More practical alternative and widely used

36

Averaged Perceptron

Given a training set 𝐷 = 𝐱(, 𝑦(where 𝐱(∈ ℜ), 𝑦(∈ −1, 1

1. Initialize 𝐰 = 𝟎 ∈ ℜ) and 𝐚 = 𝟎 ∈ ℜ)

2. For epoch in 1⋯𝑇:
1. Shuffle the data
2. For each training example 𝐱(, 𝑦(∈ 𝐷:
• If 𝑦(𝐰*𝐱(≤ 0, then:

– update 𝐰 ← 𝐰+ 𝑟𝑦(𝐱(
• 𝐚 ← 𝒂 +𝐰

3. Return 𝐚

Prediction on a new example with features 𝐱: sgn 𝐚*𝐱

37

Averaged Perceptron

Given a training set 𝐷 = 𝐱(, 𝑦(where 𝐱(∈ ℜ), 𝑦(∈ −1, 1

1. Initialize 𝐰 = 𝟎 ∈ ℜ) and 𝐚 = 𝟎 ∈ ℜ)

2. For epoch in 1⋯𝑇:
1. Shuffle the data
2. For each training example 𝐱(, 𝑦(∈ 𝐷:
• If 𝑦(𝐰*𝐱(≤ 0, then:

– update 𝐰 ← 𝐰+ 𝑟𝑦(𝐱(
• 𝐚 ← 𝒂 +𝐰

3. Return 𝐚

Prediction on a new example with features 𝐱: sgn 𝐚*𝐱

38

This is the simplest version of
the averaged perceptron

There are some easy
programming tricks to make
sure that a is also updated
only when there is an error

Averaged Perceptron

Given a training set 𝐷 = 𝐱(, 𝑦(where 𝐱(∈ ℜ), 𝑦(∈ −1, 1

1. Initialize 𝐰 = 𝟎 ∈ ℜ) and 𝐚 = 𝟎 ∈ ℜ)

2. For epoch in 1⋯𝑇:
1. Shuffle the data
2. For each training example 𝐱(, 𝑦(∈ 𝐷:
• If 𝑦(𝐰*𝐱(≤ 0, then:

– update 𝐰 ← 𝐰+ 𝑟𝑦(𝐱(
• 𝐚 ← 𝒂 +𝐰

3. Return 𝐚

Prediction on a new example with features 𝐱: sgn 𝐚*𝐱

39

This is the simplest version of
the averaged perceptron

There are some easy
programming tricks to make
sure that a is also updated
only when there is an error

If you want to use the
Perceptron algorithm, use
averaging

3. Margin Perceptron

• Perceptron makes updates only when the prediction is
incorrect

𝑦"𝐰1𝐱" ≤ 0

• What if the prediction is close to being incorrect? That is, Pick
a small positive 𝜂 and update when

𝑦"𝐰1𝐱" ≤ 𝜂

• Can generalize better, but need to choose 𝜂
Exercise: Why is the margin perceptron a good idea?

40

The Perceptron

41

The hype

42

The New Yorker, December 6, 1958 P. 44

The New York Times, July 8 1958

The hype

43

The New Yorker, December 6, 1958 P. 44

The New York Times, July 8 1958 The IBM 704 computer

What you need to know

• The Perceptron algorithm

• The geometry of the update

• What can it represent

• Variants of the Perceptron algorithm

44

