UPPSALA
UNIVERSITET

Dependency grammar and
dependency parsing

Syntactic analysis (5LN455)
2015-12-09

Sara Stymne
Department of Linguistics and Philology

Based on slides from Marco Kuhlmann

UPPSALA

svesrer ACtivities - dependency parsing

3 lectures (December)
| literature seminar (January |3)
2 assignments (DL: January |7)

* Written assignment

* Try and evaluate a state-of-the-art system,
MaltParser

Supervision on demand, by email or book a
meeting

UPPSALA
UNIVERSITET

Overview

Dependency parsing in general
Arc-factored dependency parsing

* Collins’ algorithm

* Eisner’s algorithm
Transition-based dependency parsing

* The arc-standard algorithm

Evaluation of dependency parsers

UPPSALA
UNIVERSITET

Dependency grammar

UPPSALA

owversrer D ependency grammar

* The term ‘dependency grammar’
does not refer to a specific grammar formalism.

* Rather, it refers to a specific way
to describe the syntactic structure of a sentence.

Dependency grammar

UPPSALA

svesmer 1 he notion of dependency

* The basic observation behind constituency
is that groups of words may act as one unit.

Example: noun phrase, prepositional phrase

The basic observation behind dependency
is that words have grammatical functions
with respect to other words in the sentence.

Example: subject, modifier

Dependency grammar

UPPSALA

UNIVERSITET Phrase structure trees

S

/\

NP VP

| T

NP

| /\

booked

/\

PP

T

Dependency grammar

wvesrer Dependency trees

dobj

P PTT

booked a flight from LA

In an arc h — d, the word h is called the head, and the

word d is called the dependent.
The arcs form a rooted tree.

Each arc has a label,], and an arc can be described as (h, d, /)

Dependency grammar

UPPSALA

s Fleads in phrase structure grammar

* In phrase structure grammar,
ideas from dependency grammar
can be found in the notion of heads.

Roughly speaking, the head of a phrase
is the most important word of the phrase:
the word that determines the phrase function.

Examples: noun in a noun phrase,
preposition In a prepositional phrase

Dependency grammar

UPPSALA

swesrer - Hleads in phrase structure grammar

PP

T

from LA

Dependency grammar

UPPSALA

svesmer 1 he history of dependency grammar

* The notion of dependency
can be found in some of
the earliest formal grammars.

Modern dependency grammar
is attributed to
Lucien Tesniere (1893—1954).

Recent years have seen
a revived interest in dependency-based
description of natural language syntax.

Dependency grammar

UPPSALA

owversrer—— LINGUIStIC resources

* Descriptive dependency grammars exist
for some natural languages.

* Dependency treebanks exist
for a wide range of natural languages.

* These treebanks can be used to train
accurate and efficient dependency parsers.

UPPSALA

oversirer Projectivity

* An important characteristic of dependency trees
IS projectivity

* A dependency tree is projective if:

* For every arc in the tree, there is a directed
path from the head of the arc to all words
occurring between the head and the
dependent (that is, the arc (i,l,j) implies that
i = * k for every k such that min(i,) < k <

max(i, j))

UPPSALA

swesiter Projective and non-projective trees

PRED

OB]J

PN A I

ROOT Economic news had little effect on financial markets

PC
ATT

2

ROOT A hearing S scheduled on the issue today

UPPSALA

sversrer Projectivity and dependency parsing

* Many dependency parsing algorithms can only
handle projective trees

* Non-projective trees do occur in natural

language

* How often depends on the language (and
treebank)

UPPSALA

wvesmer Projectivity in the course

* The algorithms we will discuss in detail during the
lectures will only concern projective parsing

* Non-projective parsing:
* Seminar 2: Pseudo-projective parsing

* Other variants mentioned briefly during the
lectures

* You can read more about it in the course
book!

UPPSALA
UNIVERSITET

Arc-factored dependency parsing

UPPSALA

UNIVERSITET Am bigu ity

Just like phrase structure parsing,
dependency parsing has to deal with ambiguity.

dobj

Pl TR

booked a flight from LA

UPPSALA

UNIVERSITET Am bigu ity

Just like phrase structure parsing,
dependency parsing has to deal with ambiguity.

pmod

dobj

I TR

booked flight from LA

UPPSALA

UNIVERSITET Disambiguation

* We need to disambiguate between
alternative analyses.

* We develop mechanisms for scoring dependency
trees, and disambiguate by choosing
a dependency tree with the highest score.

UPPSALA

svesmer 9COring models and parsing algorithms

Distinguish two aspects:

* Scoring model:

How do we want to score dependency trees?

* Parsing algorithm:
How do we compute a highest-scoring
dependency tree under the given scoring model?

UPPSALA

wwveser 1 he arc-factored model

* Split the dependency tree t into parts py, ..., bn,
score each of the parts individually,
and combine the score into a simple sum.

score(t) = score(pi) + ... + score(pn)

The simplest scoring model is
the arc-factored model, where
the scored parts are the arcs of the tree.

Arc-factored dependency parsing

UPPSALA

UNIVERSITET Featu res

booked

 To score an arc, we define features that are
likely to be relevant in the context of parsing.

* We represent an arc by its feature vector.

Arc-factored dependency parsing

UPPSALA

sveser EXamples of features

Arc-factored dependency parsing

UPPSALA

sveser EXamples of features

* ‘The head is a verb.

Arc-factored dependency parsing

UPPSALA

sveser EXamples of features

* ‘The head is a verb.

* ‘The dependent is a noun.

Arc-factored dependency parsing

UPPSALA

sveser EXamples of features

“The head is a verb!
“The dependent is a noun.

‘The head is a verb

and the dependent is a noun.

Arc-factored dependency parsing

UPPSALA

sveser EXamples of features

“The head is a verb!
“The dependent is a noun.

‘The head is a verb

and the dependent is a noun.

‘The head is a verb

and the predecessor of the head is a pronoun.

Arc-factored dependency parsing

UPPSALA

sveser EXamples of features

“The head is a verb.
“The dependent is a noun.

‘The head is a verb

and the dependent is a noun.

‘The head is a verb

and the predecessor of the head is a pronoun.

“The arc goes from left to right.

Arc-factored dependency parsing

UPPSALA

sveser EXamples of features

“The head is a verb.
“The dependent is a noun.

‘The head is a verb

and the dependent is a noun.

‘The head is a verb

and the predecessor of the head is a pronoun.
“The arc goes from left to right.

“The arc has length 2.

Arc-factored dependency parsing

UPPSALA

overser Feature vectors

c
3
(@)
c
(]

L
)
[
()

O
[
()
[a W
()

O
(O]

=

=
U
(.
3
)
«
()
L

Feature: ‘The head is a verb.

Arc-factored dependency parsing

UPPSALA

svirser Feature vectors

c
3
(@)
c
(]

L
)
[
()

O
[
()
[a W
()

O
(O]

=

=
U
(.
3
)
«
()
L

booked — flight

flight — from LA

flight — a booked — |

Feature: ‘The head is a verb.

Arc-factored dependency parsing

UPPSALA

w~vester |Mplementation of feature vectors

* We assign each feature a unique number.

* For each arc, we collect the numbers
of those features that apply to that arc.

e The feature vector of the arc
is the list of those numbers.

Example: [1,2,42,313,1977,2008,2010]

Arc-factored dependency parsing

UPPSALA

UNIVERSITET Featu re Weights

* Arc-factored dependency parsers
require a training phase.

During training, our goal is to assign,
to each feature f, a feature weight w..

Intuitively, the weight w; quantifies the effect
of the feature f; on the likelihood of the arc.

How likely is it that we will see
an arc with this feature in a useful dependency tree’

Arc-factored dependency parsing

UPPSALA

UNIVERSITET Featu re Weights

We define the score of anarc h = d as
the weighted sum of all features of that arc:

score(h = d) = fiw; + ... + fawy

Arc-factored dependency parsing

UPPSALA

swversrer— [raining using structured prediction

Take a sentence w and a gold-standard
dependency tree g for w.

Compute the highest-scoring dependency tree
under the current weights; call it p.

Increase the weights of all features
that are in g but not in p.

Decrease the weights of all features
that are in p but not in g.

Arc-factored dependency parsing

UPPSALA

swversrer— [raining using structured prediction

* Training involves repeatedly parsing (treebank)
sentences and refining the weights.

* Hence, training presupposes an efficient parsing
algorithm.

Arc-factored dependency parsing

UPPSALA

s Hligher order models

The arc-factored model is a first-order model, because
scored subgraphs consist of a single arc.

An nth-order model scores subgraphs consisting of (at
most) n arcs.

Second-order: siblings, grand-parents

Third-order: tri-siblings, grand-siblings

Higher-order models capture more linguistic structure
and give higher parsing accuracy, but are less efficient

Arc-factored dependency parsing

UPPSALA

owversrer—— Parsing algorithms

* Projective parsing
* Inspired by the CKY algorithm
* Collins’ algorithm
* Eisner’s algorithm
* Non-projective parsing:

* Minimum spanning tree (MST) algorithms

Arc-factored dependency parsing

UPPSALA

wvesrer (Graph-based parsing

Arc-factored parsing is an instance of graph-based
dependency parsing

Because it scores the dependency graph (tree)

Graph-based models are often contrasted with
transition-based models (next VWednesday)

There are also grammar-based methods, which
we will not discuss

Arc-factored dependency parsing

UPPSALA

oaversrer QUMIMAry

The term ‘arc-factored dependency parsing’
refers to dependency parsers that
score a dependency tree by scoring its arcs.

Arcs are scored by defining features
and assigning weights to these features.

The resulting parsers can be trained
using structured prediction.

More powerful scoring models exist.

UPPSALA

UNIVERSITET Ove rVi eW

Arc-factored dependency parsing
Collins’ algorithm
Eisner’s algorithm
Transition-based dependency parsing
The arc-standard algorithm
Dependency treebanks

Evaluation of dependency parsers

UPPSALA
UNIVERSITET

Collins’ algorithm

UPPSALA

wvesrer— Colling’ algorithm

* Collin’s algorithm is a simple algorithm
for computing the highest-scoring dependency
tree under an arc-factored scoring model.

* |t can be understood as an extension
of the CKY algorithm to dependency parsing.

* Like the CKY algorithm, it can be characterized

as a bottom-up algorithm
based on dynamic programming.

Collins’ algorithm

avesrer— Oignatures, CKY

[min, max, C]

Collins’ algorithm

UPPSALA

owvesrer— Oignatures, Collins’

[min, max, root]

Collins’ algorithm

UPPSALA

owverser INitialization

Collins’ algorithm

UPPSALA

owverser INitialization

from LA

[0, 1,1] [1,2, booked] 2,3, 2] [3, 4, flight] [4, 5, from LA]

Collins’ algorithm

w~vesrer Adding a left-to-right arc

from LA

Collins’ algorithm

w~vesrer Adding a left-to-right arc

from LA

1
[3, 4, flight] [4, 5, from LA]

Collins’ algorithm

w~vesrer Adding a left-to-right arc

\/
from LA

1
[3, 4, flight] [4, 5, from LA]

Collins’ algorithm

w~vesrer Adding a left-to-right arc

\/
from LA

3, 5, flight]

Collins’ algorithm

w~vesrer Adding a left-to-right arc

Collins’ algorithm

w~vesrer Adding a left-to-right arc

Collins’ algorithm

w~vesrer Adding a left-to-right arc

Collins’ algorithm

w~vesrer Adding a left-to-right arc

Collins’ algorithm

UPPSALA

svesrer Adding a left-to-right arc

score(t) = score(t)) + score(tz) + score(l = r)

Collins’ algorithm

UPPSALA

svesrer Adding a left-to-right arc

for each [min, max] with max - min > 1 do
for each 1 from min to max - 2 do
double best = score[min][max][1l]
for each r from 1 + 1 to max - 1 do
for each mid from 1 + 1 to r do
t1 score[min][mid][1]
t2 score[mid][max][r]
double current = t; + t2 + score(l » r)
if current > best then
best = current

score[min][max][1] best

Collins’ algorithm

wvesrer Adding a right-to-left arc

\/
from LA

Collins’ algorithm

wvesrer Adding a right-to-left arc

\/
from LA

1
[0, 1,1] [1,2, booked]

Collins’ algorithm

wvesrer Adding a right-to-left arc

\/
from LA

[1,2, booked]

Collins’ algorithm

wvesrer Adding a right-to-left arc

\/
from LA

[0, 2, booked]

Collins’ algorithm

wvesrer Adding a right-to-left arc

Collins’ algorithm

wvesrer Adding a right-to-left arc

Collins’ algorithm

wvesrer Adding a right-to-left arc

Collins’ algorithm

wvesrer Adding a right-to-left arc

Collins’ algorithm

UPPSALA

svesrer Adding a right-to-left arc

score(t) = score(t)) + score(tz) + score(r —)

Collins’ algorithm

UPPSALA

svesrer Adding a right-to-left arc

for each [min, max] with max - min > 1 do
for each r from min + 1 to max - 1 do
double best = score[min][max][r]
for each 1 from min to r - 1 do
for each mid from 1 + 1 to r do
t1 score[min][mid][1]
t2 score[mid][max][r]
double current = t; + t2 + score(r » 1)
if current > best then
best = current

score[min][max][r] best

Collins’ algorithm

UPPSALA

UNIVERSITET F|n|Sh|ng UP

\/
from LA

Collins’ algorithm

UPPSALA

UNIVERSITET F|n|Sh|ng UP

\/
from LA

3, 5, flight]

Collins’ algorithm

UPPSALA

UNIVERSITET F|n|Sh|ng UP

\/
from LA

2,5, flight]

Collins’ algorithm

UPPSALA

owversiter— FiNishing up

\/
from LA

[0, 2, booked] 12, 5, flight]

Collins’ algorithm

UPPSALA

owversiter— FiNishing up

\/
from LA

[0, 5, booked]

Collins’ algorithm

UPPSALA

avesmer - Complexity analysis

Runtime?

Space!
for each [min, max] with max - min > 1 do
for each r from min + 1 to max - 1 do
double best = score[min][max][r]
for each 1 from min to r - 1 do
for each mid from 1 + 1 to r do
t;1 = score[min][mid][1]
t, = score[mid][max][r]
double current = t; + t2 + score(r » 1)
if current > best then
best = current

score[min][max][r] = best

Collins’ algorithm

UPPSALA

wvesrer Complexity analysis

Runtime?

Space!
for each [min, max] with max - min > 1 do
for each r from min + 1 to max - 1 do
double best = score[min][max][r]
for each 1 from min to r - 1 do

for each mid from 1 + 1 to r do

t;1 = score[min][mid][1]

t, = score[mid][max][r]

double current = t; + t2 + score(r » 1)

if current > best then

best = current

score[min][max][r] = best

Collins’ algorithm

UPPSALA

wvesrer Complexity analysis

Runtime?

Space!

for each [min, max] with max - min > 1 do

for each r from min + 1 to max - 1 do

double best = score[min][max][r]

for each 1 from min to r - 1 do

for each mid from 1 + 1 to r do

t;1 = score[min][mid][1]

t, = score[mid][max][r]

double current = t; + t2 + score(r » 1)

if current > best then

best = current

score[min][max][r] = best

Collins’ algorithm

UPPSALA

avesmer - Complexity analysis

* Space requirement:

O(Iwl’)

* Runtime requirement:

O(Iwl*)

UPPSALA
UNIVERSITET

Collins’ algorithm

Summary

* Collins’ algorithm is a CKY-style algorithm
for computing the highest-scoring dependency
tree under an arc-factored scoring model.

* It runs in time O(|w]>).
This may not be practical for long sentences.

* We have not discussed labels yet - we will do that

next lecture

